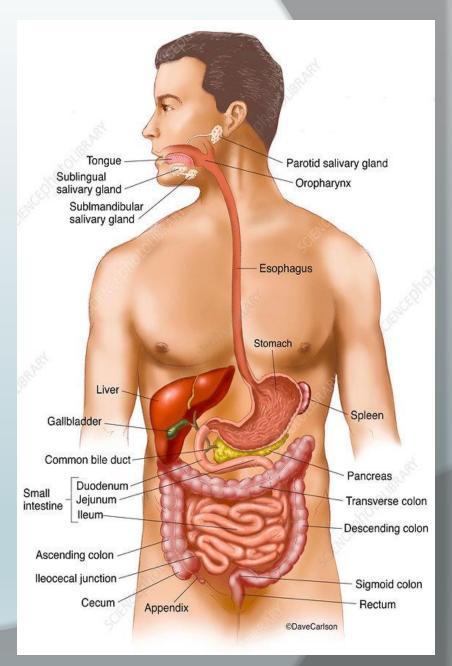


1. SALIVARY SECRETION, SWALLOWING & ESOPHAGEAL MOTILITY.

Prof. Sherif W. Mansour
Physiology dpt., Mutah School of medicine
2020-2021

GIT


Oral cavity

Mastication: (chewing)

- It is the process of mechanical breakdown of large food particles into smaller ones in the mouth.
- The crushing force of incisors 11-25 & of molars 20-40 kg.
- •Its importance:
- a- Stimulation of taste and smell receptors \rightarrow sense of satiety.
- b- Help swallowing by lubrication of food by saliva.
- c- Help digestion by break down of indigestive cellulose membrane around the digestive portion of fruits and vegetables also by increasing the exposed surface area to enzymatic effect.
- •It is partly voluntary and partly reflexly by chewing reflex in which :

Presence of food in mouth \rightarrow reflex relaxation of chewing muscles \rightarrow drop of mandible and open the mouth \rightarrow stretch on the muscles \rightarrow reflex re-contraction and closure of the mouth and so on.(the mastication muscles are supplied by the motor branch of the trigeminal nerve).

•The **chewing center** is present in the **pons**.

Salivary Secretion

- •Saliva: 1.5 L/day, hypotonic, pH is 6.3-6.8 but in the mouth it becomes more alkaline due to loss of CO2.
 - •Salivary glands : three pairs of salivary glands :

Parotid	Sub maxillary	sublingual
• 20 %.	• 75 %.	• 5 %.
• Serous acini for secretion (watery & rich in enzyms.).	• Mixed.	• Mucus acini (thick, rich in mucin).
• supplied by glossopharyngeal	• Facial.	• Facial.

N.B: Ebner's glands and buccal glands secrete 5% of saliva.

- •Composition of saliva: a- 99.5 % water. b- 0.5 % solids.
- . 0.3 % organic: as enzymes (amylase, Lipase, Lysozymes), mucus, somatostatin, kalikrein enzyme, immuno-globulin A and blood groups substances.

(The protein in saliva are amylase enzyme & Mucus

- . **0.2** % inorganic:
- -Buffers as (H2 Co3 : Na Hco3 & NaH2Po4 : Na2 HPo4).
- -Soluble calcium salts: Ca(Hco3)2, Ca(H2Po)2 which saturate saliva to prevent decalcification of teeth.
 - -Some electrolytes as Na+ , Cl-, Hco3-, and K+ ,they act as coenzymes for salivary enzyme amylase.

•Functions of saliva:

- 1. Facilitation of speech and deglutition.
- 2.Cleaning (hygiene) of the mouth by washing and antibacterial effect of lysozymes, thiothianate ions and Immunoglobulins A.
- 3.Buffering function: by bicarbonate and phosphate systems to keep the PH at about 7.0 → the teeth do not loose their calcium. Also saliva neutralizes gastric secretion in case of gastroesophageal reflux.
- 4. Digestive function:
- -Ptyalin (salivary α amylase): digest starch to maltose in PH 6.9 so it is inhibited in the stomach.
- Lingual Lipase: digest 30 % of lipids and secreted from Ebner's gland of tongue.
- 5.Excretory function : of lead, mercury, iodides, fluoride and some drugs as morphine and alcohol.
- 6.Facilitate taste sensation and the kalikrein enzyme produce bradykinin which acts as vasodilator during salivary secretion.
- 7.Regulation of water balance (↓ in dehydration and give thirst sensation).
- 8. Contains hormones as somatostatin & glucagone.

Control of salivary secretion

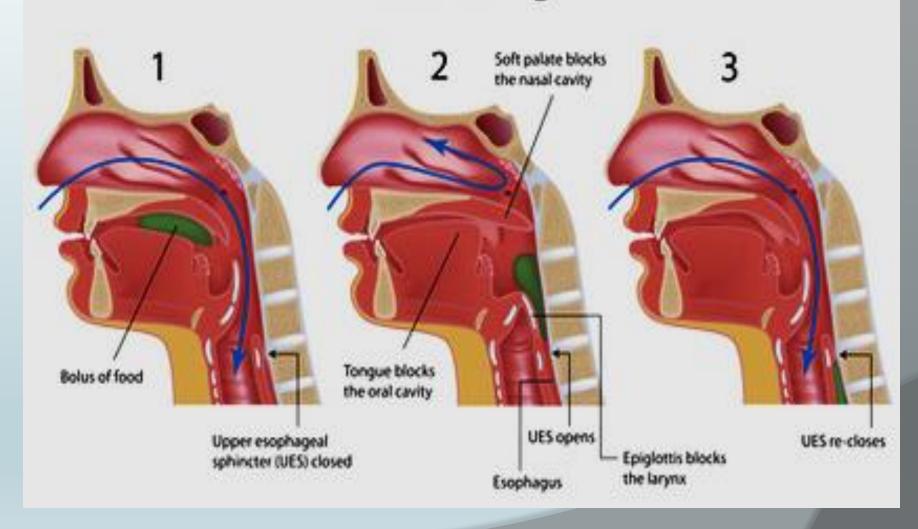
Nervous only via conditioned and unconditioned reflexes.

[I]Unconditioned reflex:

Inborn reflex that needs no pervious learning.

- a. Stimuli: direct contact of food, Chewing & Irritation of GIT.
- b.**Receptor:** taste receptors.& Receptors in GIT wall.
- c.Afferent:
- -Chorda tympani: from ant. 2/3 of tongue.
- -Glossophayngeal: from post. 1/3 of tongue
- -Ligual nerve : movement of tongue.
- -Vagus nerve : from epiglottis.
- **d.** Center: superior & inferior salivatory nuclei in M.O.
 - e. Efferent: chordae tympani & glossopharyngeal.
- **f. Response**: ↑ salivary glands secretion.
- [II] Conditioned reflex: Acquired reflexes and need previous learning.
 - a.Stimuli:
 - -Seight of food.
 - -Smelling of food.
- -Hearing about food.
- -Thinking of food.
- **b.** Receptors : special sense receptors.
- **c. Afferent**: optic, olfactory & auditory nerves.
- **d. Center**: to cerebral cortex \rightarrow salivatory nuclei.
- **e. Efferent & response** \rightarrow as unconditioned reflex.

Swallowing (Deglutition)


- o It is the propelling of food bolus from mouth to stomach.
- o It is under control of the swallowing center in the medulla.
- o It can be divided into 3 phases:
- **1-Buccal phase:** (voluntary) elevation and retraction of tongue against the hard palate propels the bolus to the pharynx.
 - **2-Pharyngeal phase** (involuntary):

It is very rapid (1 second), occur reflexely via:

Swallowing reflex:

- •Receptor: in oropharynx (tonsillar pillars).
- •Afferent: glossopharyngeal nerves.
- •Center: medulla oblongata (swallowing center).
- •Efferent: motor fibers of cranial nerves V, 1X, X, X11.
- •Response: series of reflexes to prevent entry of food in to air passages:
- 1.Elevation of soft palate \rightarrow closure of nasal cavity.
- 2.Approximation of palate-pharyngeal folds → sagittal slit through which small food particles pass and prevent passage of large particles.
- 3.Closure of glottis (opening of larynx) by approximation of vocal words & elevation of larynx and folding of epiglottis
- 4.Inhibition of breathing (swallowing apnea).
- 5.Relaxation of pharyngo-esophegeal sphincter and contraction of superior pharyngeal muscle → rapid pharyngeal peristalsis → forces the food into relaxed upper esophagus.

Swallowing

3-Esophageal phase (involuntary):

a-Upper esophageal sphincter : (UES)

The pharyngeo – esophageal junction is normally closed by striated muscle tone to prevent entry of inspired air into stomach. During swallowing the sphincter relaxes reflexely and then reclosed after swallowing.

b-Traveling along the esophagus:

Entry of food bolus into the esophagus initiate peristaltic waves of 2 types :

- •Primary peristaltic waves:
- a. They start at the upper end of oesophagus.
- b. They are continuation of the pharyngeal peristalisis.
- c.It travels at the rate of 2-4 cm/sec. But gravity may increase velocity of food bolus to about 4cm/sec.

Secondary peristaltic waves:

- a. Presence of bolus in the esophagus initiate peristaltic waves at site of bolus.
- b-These waves repeated until food bolus is driven down the stomach.
- c-Peristaltic movements in the upper half of esophagus is coordinated by vago vagal reflex (striated ms.), while in lower half is coordinated by local enteric reflex so, bilateral vagotomy \rightarrow difficult swallowing in the upper half only (In this case the food bolus must be small, soft and well lubricated and by aid of gravity).

Thank You