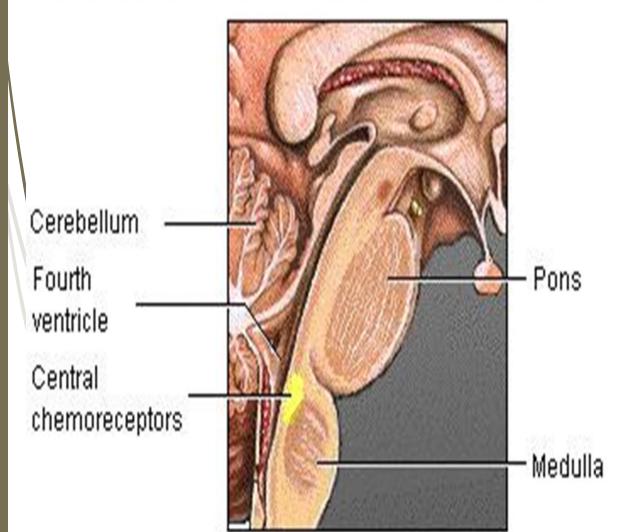
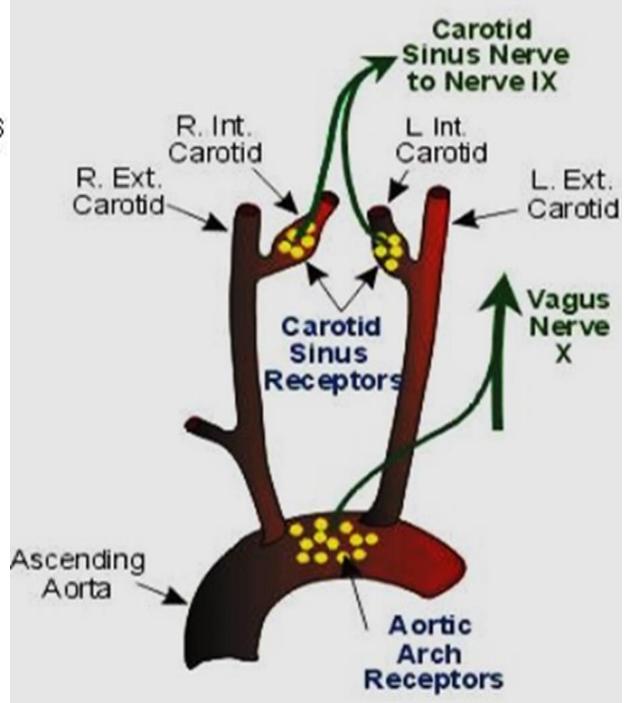
Regulation of Respiration

7- Chemical & Non-Chemical Control Of Respiration

By

Dr. Nour A. Mohammed
Associate professor of physiology
Faculty of medicine, Mutah University

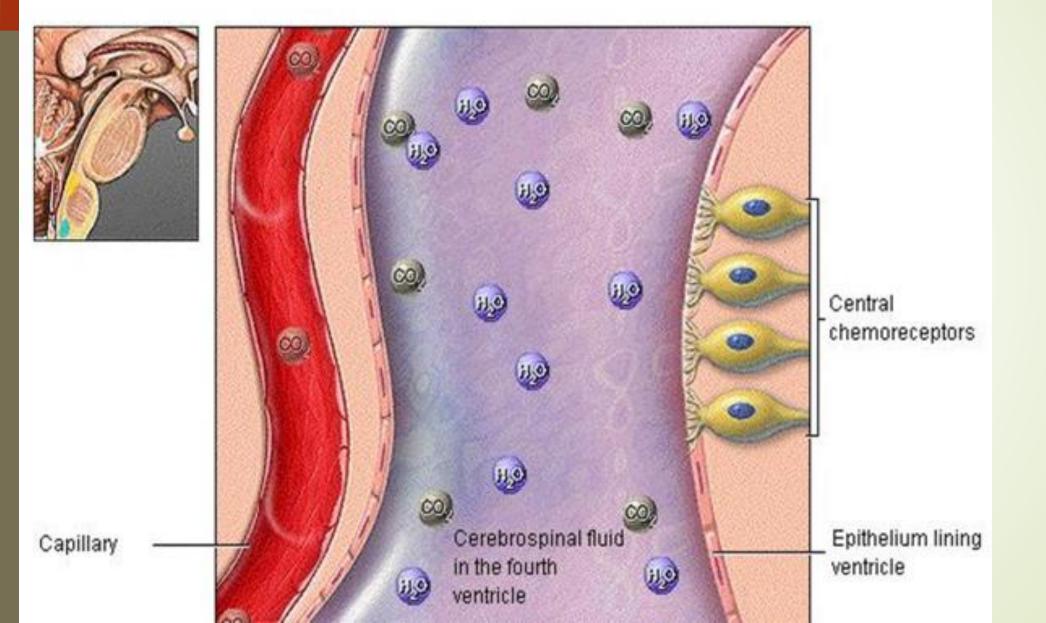

[B] Chemical regulation of respiration

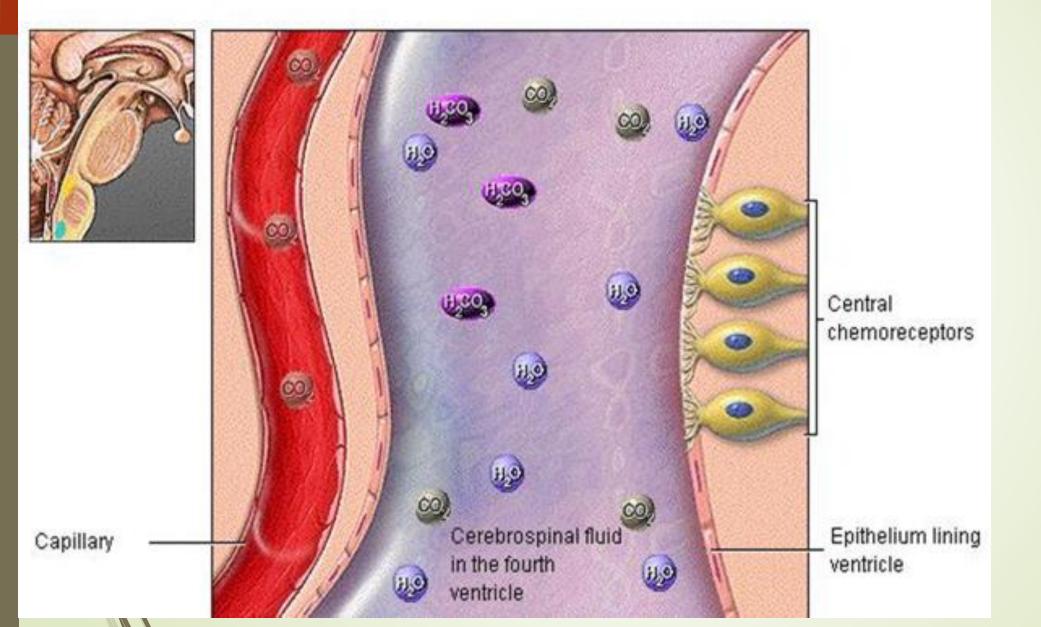

-Respiration is stimulated by: \uparrow Co2 tension , \downarrow O2 tension and \uparrow H+ ion concentration in the arterial blood.

- These changes are associated with increase the metabolic activity

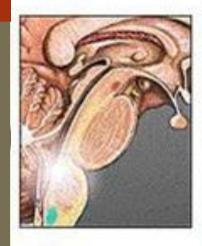
-This effect occurs via the peripheral and central receptors.

The central chemoreceptors in the medulla monitor the pH associated with CO_2 levels in the CSF in the fourth ventricle. The chemoreceptors synapse directly with the respiratory centers

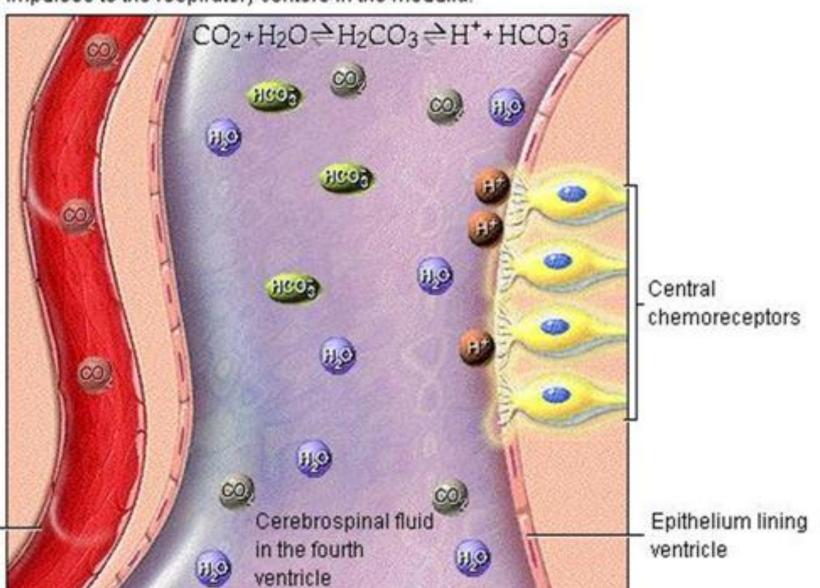



	Peripheral chemoreceptors	Central chemoreceptors
Site	1) Aortic body: in the aortic arch.	- Bilaterally in medulla
	2) Carotid body: at bifurcation of	- Near to respiratory center.
	common carotid artery.	But, separate from it.
Afferent	 Aortic body via: Vagus nerve. (X) 	- Direct contact with (CSF)
	Carotid body via: glossopharyngeal(IX)	
	BOTH are called: the <u>buffer nerves</u> .	the blood brain barrier (BBB).
Stimulus	 Hypoxia (♣ O₂ tension to 60mmHg) 	- These receptors are ONLY
	the <u>main</u> stimulus.	stimulated by ft PCO2 in arterial
	So, they are called O, lack receptors.	blood.
	2. Hypercapnia (û CO₂ tension)	- CO ₂ penetrate the BBB because CO ₂
	with less effect (30% of effect).	is lipid soluble.
	3. Acidosis (宜 H ⁺ concentration).	- In CSF:
	4. 介K ⁺ & 介 Nicotine.	By carbonic anhydrase enzyme:
	These conditions occur by:	- CO ₂ + H ₂ O ⇔ H ₂ CO ₃
	Hypotension & Hyperactive tissue	$H_2CO_3 \Leftrightarrow H^+ + HCO_3$.
	Hemorrhage & at High altitude.	H ⁺ in CSF stimulates the
	- The blood flow to these receptors is	chemoreceptors which in turn
	very high = 2000ml/100 gm tissue.	stimulate the respiratory center.
	- So, these receptors depend only on	
	the dissolved O2 and stimulated by	H* is not buffered by CSF as it has low
	very low PO ₂ .	protein content.
	- Not stimulated by Oxyhemoglobin	
	content as in anemia or CO poisoning.	û H ⁺ in arterial blood <u>not</u> stimulate
	- Histotoxic hypoxia (♣ O₂ utilization	these receptors as H ⁺ not penetrate
	of tissue) is more powerful stimulant.	the blood brain barrier.

CENTRAL CHEMORECEPTORS: EFFECT OF PCO2



CENTRAL CHEMORECEPTORS: EFFECT OF PCO2



CENTRAL CHEMORECEPTORS: EFFECT OF PCO2

The hydrogen ions stimulate the central chemoreceptors, which send nerve impulses to the respiratory centers in the medulla.

Capillary

Ventilatory response to O2 lack

O2 lack is a weaker stimulus for the respiration than the Co2 excess, and act only via the peripheral receptors

This weak stimulatory effect (2-4 folds only) is due to:

- 1- Decrease O2 ⇒ more reduced hemoglobin, which is weak acid and buffer H+ leading to inhibition of respiration.
- 2- Decrease O2 ⇒ slight stimulation of respiration ⇒ wash of Co2 and H+ ⇒ decrease Co2 ⇒ strong inhibitory effect on respiration which oppose the stimulatory effect of decrease O2 leading to inhibition of respiration.

But the O2 lack effect increased in cases of:

1- Overdose of Anesthesia as it depresses the **central chemoreceptors** with no response to Co2 and respiration in these cases is maintained only by **O2 lack** ,So, 100% O2 during anesthesia ⇒ inhibit respiration and may be fatal

Ventilatory response to CO2 excess

- 1 PCO2 is **more** stimulants for respiration than O2 lack
- 1 PCO2 act on **both** central receptors (70%) & peripheral receptors (30%).

Effect of CO2 excess

CO ₂ excess	Effect
û CO₂ in inspired air to 5%	2 folds increase in respiration
⇒ û PCO₂ in arterial blood.	To get rid of this excess CO ₂ .
ப CO₂ in inspired air to 10%	10 folds increase in respiration
⇔	To get rid of this excess CO ₂ .
ॻ CO₂ in inspired air to >10%	CO ₂ narcosis:
	Inhibition of respiratory center ⇒ more
	accumulation of CO ₂ (hypercapnea) & headache
	& coma & death from CO ₂ narcosis.

Carbogen: Mixture of 5% CO2 + O2 is used to stimulate respiration.

Ventilatory response to H+

Increased H⁺ caused by

1) Respiratory acidosis in which hypoventilation which isn't secondary to fall in H⁺ concentration \rightarrow accumulation of Co₂ & H⁺ \rightarrow acidemia (\downarrow pH less 7.4)

2) *Metabolic acidosis* as in diabetes mellitus with ketoacidosis \rightarrow acidemia.

This led to hyperventilation (rapid and deep **kussmoul** respiration) via stimulation of the peripheral receptor.

C – Non-chemical regulation 1. Afferents from the respiratory system

A. From the lung

	Lung stretch receptor (Herring Breuer inflation reflex)	Lung irritant receptors	J-receptors (Pulmonary chemoreflex)
Receptors	Stretch receptors in the bronchi.	Bronchi & Bronchioles.	Close to alveoli (Juxta capillary)
Stimulus	Overinflation By 1500 ml.	Irritants as: Cigarette.	Pulmonary <u>E</u> dema & <u>E</u> mboli.
Afferent	Vagus.	Vagus.	Vagus.
Response	a) Inhibit DRG & inhibit apneustic center.b) Bronchodilatation.	a) Cough. b) Bronchoconstriction.	a) Apnea.b) Hypotension.c) Bradycardia.

B. From the upper respiratory passages

	Sneezing	Cough	Swallowing
Stimulus	Irritation of nose.	Irritation of bronchi.	Irritation of pharynx.
Afferent	Trigeminal. (V)	Vagus. (X)	Glossopharyngeal. (IX)
Response	Deep inspiration Followed by forced expiration Against opened glottis.	Deep inspiration Followed by forced expiration Against closed glottis with sudden opening.	Swallowing apnea (stoppage of respiration) and closure of glottis.

2. Afferent from the cardiovascular system

	Arterial baroreceptors	Atrial baroreceptors
Stimulus	ப் ABP & ப் pulse pressure.	û VR.
Afferent	Vagus & glossopharyngeal.	Vagus.
Response	Inhibit respiration.	Stimulate respiration.

- ✓ Adrenaline apnea: Injection of large dose of adrenaline ⇒ VC ⇒ ÛABP
- ⇒ stimulate arterial baroreceptors ⇒ reflex apnea

3. Afferents from higher centers

- A. Limbic cortex & Hypothalamus:
- Mild pain & emotions: ⇒ tachypnea via sympathetic
- Severe pain & emotions: ⇒ inhibition of respiration
- Hot as fever: ⇒ stimulation of respiratory center
- Panting: shallow rapid breathing in dogs (no sweat glands) ⇒ heat loss
- B. Cerebral cortex: (Voluntary control)
- I. Noluntary apnea (breath holding)
- Temporary stoppage of breathing till the breaking point.
- Voluntary apnea ⇒ û CO2 & û H+ & ŪO2 ⇒ stimulate respiration
- Breaking point is delayed by:
- a) Previous hyperventilation ⇒ ↓ CO2
- b) Breathing 100% O2 before apnea ⇒ û O2
- c) Holding the breath in full inspiration ⇒ inhibition of respiration
- d) Swallowing (deglutition) ⇒ inhibition of respiration

Types of apnea

- 1) Voluntary apnea may occur during speech, blowing, suckling, childbirth, micturition and defecation
- 2) Apnea follows the voluntary hyperventilation
- 3) Adrenaline apnea
- 4) Swallowing apnea
- 5) Chyne-stokes respiration

I/I. Voluntary hyperventilation

Increase in depth and rate of respiration $\rightarrow \downarrow PCo_2$ from 40 to 15 mmHg (hypocapnia), $\uparrow PO_2$ from 100 to 130 mmHg and $\downarrow H^+$ (alkalosis) \rightarrow inhibition of respiration \rightarrow apnea $\rightarrow \downarrow O_2$ & \uparrow $Co_2 \rightarrow$ stimulate respiration \rightarrow hyperventilation and the cycle is repeated, then PCo_2 return to normal level and breathing becomes normal. This alternate hyperventilation and apnea is called (**periodic breathing**) or (chyne-stokes respiration)

Causes of chyne-stokes respiration (Periodic respiration)

- 1. After voluntary Hyperventilation.
- High altitude (hypoxia).
- 4. Live failure & kidney failure ⇒ inhibition of DRG by toxic substances.
- Narcotics & morphine ⇒ û sensitivity of chemoreceptors to CO₂.

4- Afferents from skeletal muscles, joints and skin

- (a) From muscle spindle of the intercostal muscle and the diaphragm to regular the depth of respiration.
- (b) From the proprioceptors: During muscle movements, afferent from tendons, ligaments and joints to stimulate the respiratory center \rightarrow exercise hyperventilation.
- (c) From the skin: Exposure to cold leading to initial apnea followed by deep inspiration

5) Respiratory components of the other visceral reflexes

- A. Swallowing and vomiting: Apnea to prevent aspiration of food of vomitus
- B. **Hiccup:** Sudden contraction of diaphragm ⇒ sudden inspiration with sudden closure of the glottis → producing characteristic sound
- It occurs due to irritation of diaphragm or upper abdominal viscera
- It is treated by inhalation of CO2 gas mixture or tranquilizer drugs
- C. Yawning: is infectious respiratory act characterized by deep inspiration to:
- a) Open alveoli to prevent collapse b) 个 venous return

