Pumping Action of the heart

Dr. Arwa Rawashdeh

Cardiac Conduction System

- The heart beats over 3 billion times in its lifetime.
- to do so there must be a properly functioning electrical system

ocalled the cardiac conduction system

the action potential

- A key component is the action potential:
- is an **electrical wave of depolarization** that sweeps over the heart from atria to ventricles.
- akas: impulse, current, signals, electrical signals, wave of depolarization.

JUNCTIONAL REGION?

- ^ junctional region basically is the AV node, and bundle of His.
- ^ Some authors include the surrounding tissue as well.
- ^ Junctional arrhythmias arise from this area.
- ^ the penetrating fibers of the bundle of His is also where the current normally passes through the fibrous skeleton
- This is the beginning of ventricular depolarization.

FIBROUS SKELETON?

^ electrically insulates the atria from the ventricles.

^ Normally there is a **hole** in the **right fibrous trigone** (and the central fibrous body which includes the right fibrous trigone)

^ normally, this is the only place that the SA Node-generated current can get from the atria to the ventricles.

Why is the atria need to contract first?

- contraction of the atrial is called atrial systole.
- atrial systole <u>squeezes</u> all the **blood out of the atria** which in turn "tops off" or completely fills the ventricles.
- if there was no delay between contraction of the atria and ventricles, the ventricles would not be filled to capacity.
 - ODecreased ejection fraction!
- so that delay is super important!

Heart Cells: Contractile cells

- 99% of the heart's myocardial cells in the atria and ventricles perform mechanical work by contracting.
- These are the "worker bees" of the heart.
- Their contractions is what drives blood through and then out of the heart.

Worker bee

"I'm so tired! I neve get much rest."

Worker bees have a secrete: they are autorhythmic!

- Under <u>normal circumstances</u>, most myocardial cells do not initiate action potentials
 - o in other words, they do not "pace" the heart!
- However, they are "counting down," just in case they get "the call" to run (pace) the heart!
 - owhich they occasionally do!
 - e.g., PVC, PAC

Worker bees: "normal?"

- so because of their slowness, they usually have nothing to do with "pacing" the heart
 - they are just slow worker bees following orders.
- However, sometimes they can become "mischievous"!
 - O PVC
 - o PACs
- when they do so, they can run the heart
- this is <u>called</u> an <u>arrhythmia</u>.
- e.g., ectopia atrial tachycardia or ventricular tachycardia

Worker bees: another job

- In addition to contracting, they also have to spread the wave of depolarization to their neighbor cells.
 - owhen the current hits them, they depolarize and then <u>spread</u> that depolarization to their neighbors.
 - oThis is called "cell-to-cell spread"
- Although cell-to-cell spread fairly fast, it is not nearly as fast as the superhighways of conduction, like Bachmann's bundle, or the bundle branches

Overdrive suppression: the crushing of the worker bee's dream!

- when the wave of depolarization hits the worker be it "knocks out" its count down (depolarization).
- Makes them <u>reset</u>.
- This is why worker bees <u>almost never</u> get to pace the heart
 - othey keep getting knocked out.

Pacemaker cells

- Although any myocardial cell has the "potential" to become a pacemaker, some cells are born to pace the heart:
 - othey are very fast depolarizers
 - oMuch faster than worker bees.
- Only the <u>fastest depolarizer</u> get to <u>pace the heart!</u>
- These "quick depolarizers" are called the "pacemaker cells, and include the *SA node, AV node, and the bundle of His.

Who's the fastest?

- The "Champion" of all cardiac autorhythmic cells (i.e., the one that depolarizes the fastest) are the cells of the <u>SA node</u>!
 - OAka, Sinoatrial node
- Normally, it "paces the heart."
 - OStarts the action potential that eventually sweeps over the entire atria and ventricles
 - Causes blood ejection.

The conduction system: a third type of heart cell

- a.k.a., Purkinje system
- About 1% of the heart cells <u>are</u> neither "worker bees" nor "pacemaker cells"
- Their job specialty is to <u>carry/speed the electrical</u>
 <u>signal</u> generated by the <u>SA node</u> through the atria, interventricular septum, and ventricles.

- Members include....
 - oBachmann's bundle
 - Atrial internodal conduction pathways
 - **OBundle branches**
 - Purkinje fibers.
- all members are designed to conduct action potentials very quickly!

AV node & bundle of His?

- Some authors include the AV node and bundle of His as members of the conduction system as well
 oln addition to being pacemaker cells
- Have virtually no contractile function, though.
- However, they are <u>still autorhythmic</u> and <u>can pace the</u> <u>heart</u> if need be.
 - oIn fact, they're pretty good at pacing the heart if need be.

Meet the entire team: the heart's electrical system

- 1. Sinus node (SA node)
- 2. Bachmann's bundle (interatrial conduction pathway)
- 3. Atrial internodal conduction pathways
- Atrioventricular node (AV node) and its one or two entry-tracts.
- 5. Atrioventricular bundle (AV bundle, *Bundle of His)
- 6. Right and left bundle branches
- 7. Right and left Purkinie fibers (subendocardial plexuses)

Sinoatrial Node

- Because of this superficial positioning, it can be easily damaged by...
 - oatrial myocardial infarction
 - ometastatic neoplasm
 - opericarditis
- Its "countdown" speed is also greatly influenced by sympathetic and parasympathetic nerves that plug into it or near it.

^notice only the SA and AV nodes have parasympathetic input.

^ is also affected by angiotensin II which is sparked via the R2A system.

Sinoatrial Node: connections

- Connects directly to ...
 - 1. adjacent atrial myocardial muscle cells (fiber)
 - Sparks cell-to-cell spread
 - 2. special <u>right atrial</u> conduction system, called the <u>atrial</u> <u>internodal pathways</u>
 - 3. Another special, super-fast interatrial conduction pathway called Bachmann's bundle

Bachmann's bundle!

- is a "superfast conduction highway"
- it is so fast that the current comes out of the SA node and is immediately transmitted to the left atrial!
- Without Bachmann's bundle, the right atrium would contract well before the left, which would lead to big problems!
 - **OArrhythmias**
 - oCompromised cardiac output

Other Autorhythmicity Tissues

Other cells can pace the heart, which include (in order):

- Atrioventricular node (AV node)
 - Pacemaker activity rate = 40 60 b/m
 - Can permanently take over!
- Bundle of His
 - Pacemaker activity rate = 20 40 b/m
- Bundle branches and distal Purkinje fibers
 - o 15 40 b/m
 - Do have pacemaker potential, but typically not enough to sustain life very long!.
- Atrial myocardial cells (45-65 b/m)
 - don't normally permanently take over pacing duties! [Garcia]
 - o We'll talk about atrial fibrillation!

A

- A.k.a., AV node
- Located subendocardially (i.e., between the endocardium and myocardium) in the inferomedially region of the right atrium
 Much deeper than the SA node!
- Electrophysiology speak, it's located in an area of the heart called the junctional region.
 - •Many authors say it is the junctional region!

Function of the AV node?

 Once the AV node <u>receives the</u> <u>impulse</u>, it's job is to slow down the <u>signal!</u>

 The slowdown is called decremental conduction. Hey wave of depolarization, slow it down!

AV node vs. ANS

- Like the SA node, it is also significantly influenced by sympathetic and parasympathetic nerve fiber which actually enters it!
 - OSO sympathetic and parasympathetic are connected to the AV node.
- Parasympathetic stimulation will increase the delay time (increases decremental conduction)
- Sympathetic stimulation will <u>decrease</u> the delay time (decreases decremental conduction)

Bundle of His

- Has a dual blood supply
 - Hard to take out of action
- made of Purkinje cells with a limited number of ventricular myocardial cells, arranged in parallel
- The AV bundle has 2 components:
 - oA penetrating portion
 - A distal portion

Bundle of His: accessory pathways

- sometimes the fibrous skeleton can have pathological holes in it!
 - Remember, there is normally one hole for the penetrating fibers of the bundle of His.
- These holes are often filled with superfast conduction fiber
- these holes <u>can allow</u> the wave of depolarization from the atria to "<u>sneak</u>" into the <u>ventricle ahead of time!</u>
- This screws up the heartbeat and can be seen on EKG!
- perfect breeding ground for a supraventricular tachycardias!
 - o we shall talk about AVRT (atrioventricular reentry tachycardia)

^ will learn about Wolff-Parkinson-White syndrome and how it can lead to a common type of supraventricular tachycardias: atrioventricular reentry tachycardia.

