RONE BY ; BANDAR AL - SHWABKAH

work energy and power

Work done by a consonant force

- The work done by a constant force \vec{F} is given by :
- $W=\vec{F} * \vec{S}=F S * \cos \theta$
- The unit of work is joule (J), where $1 \mathrm{~J}=1 \mathrm{n} . \mathrm{m}$
- The work done by frictional force is :
- $W_{f}=-F S$
- When $\theta=180$

- Example : (dragging a box)
-1) calculate the work done by the force F
- 2) calculate the work done by the fractional F
-3) determine the net work done on the box by all forces

- To be continued

- Solution :

- 1) $\mathrm{W}_{\mathrm{F}}=\mathrm{FS} * \cos 0=50 * 3 * \cos 37=120 \mathrm{~J}$
- 2) $\mathrm{W}_{\mathrm{f}}=\mathrm{FS} * \cos 180=-\mathrm{FS}=-10 * 3=-30 \mathrm{~J}$
- 3) $\mathrm{W}_{\text {net }}=\mathrm{W}_{\mathrm{F}}+\mathrm{W}_{\mathrm{f}}=120-30=90 \mathrm{~J}$

Work done by a varying force

- The work done on an infinitesimal displacement Δx is:
- $\Delta w=F_{x} \Delta x=\Delta A \quad$ (area)
- The total work :
- $W=\Sigma \Delta w=\sum_{\mathrm{i} i=}^{x p} F_{x} \Delta x$
- $W=\lim _{\Delta x \rightarrow 0} \Delta w=\lim _{\Delta x \rightarrow 0}^{x p} \sum_{i=0}^{x p} F_{x} d x=\int_{x i}^{x p} F_{x} d x$

- $W==_{x i}^{x f} F_{x} d x=$ area under the curve

- Example : calculate the work done by the force F_{x} as the object moves from $x_{1}=0$ to $x_{f}=6 \mathrm{~m}$

- Solution :

- $\mathrm{W}=\mathrm{W}_{1}+\mathrm{W}_{2}=\mathrm{A}_{1}+\mathrm{A}_{2}=(5 * 4)+(1 / 2 * 2 * 5)=25 \mathrm{~J}$
- Or :
- $W=\int_{0}^{6} F_{x} d x=\int_{0}^{4} 5 d x+\int_{4}^{6}(15-5 / 2 * x) d x=20+5=25 J$

Work done by a spring

- The force done by a spring stretched or compressed a small distance x from equilibrium is given by :
- $\mathrm{F}_{5}=-\mathrm{KX}$ (Hooke's law)
- Where K is the spring constant.
- The work done by the spring force is given by :
- $W_{s}=\int_{x i}^{* x} F_{x} d x=\int F_{s} d x=\int_{x i}^{* p}-K X d x$
- $W_{s}=1 / 2 k\left(x_{i}^{2}-x_{f}^{2}\right)$

- Example : calculate the work done by the spring force as the block moves from $X_{i}=-3 \mathrm{~cm}$ to $X_{f}=0$

- Solution :
- $W_{s}=1 / 2 k *\left(x_{i}^{2}-x_{f}^{2}\right)=1 / 2 * 80 *\left[(-0.03)^{2}-0\right]=3.6 * 10^{-2} \mathrm{~J}$

Work and kinetic energy

- 1 - $D_{x f}$ motion

- $W=\int_{x i}^{x f} F_{x} d x$, but $F_{x}=m a_{x}=m^{*} d v_{x} / d t=m^{*} d v_{x} / d x * d x / d t$ (chain rule)
- $F_{x}={ }^{x i} m * d v_{x} / d x{ }^{*} v_{x}$
- Or:
- $F_{x}=m v * d v / d x$
- $W=\int(m v * d v / d x) d x=\int_{v i p}^{u p} m v d v$
- $W=1 / 2 m\left(v_{f}^{2}-v_{i}^{2}\right)$
- We define the kinetic energy K as :
- $K=1 / 2 m v^{2}$
- $\mathrm{W}=\mathrm{k}_{\mathrm{f}}-\mathrm{k}_{\mathrm{i}}=\Delta \mathrm{k}$ (work - energy theorem)
- 3 - D motion
- $W=\int \vec{F} * d \vec{s}=\int F_{x} d x+\int F_{y} d y+\int F_{z} d z=\Delta k=1 / 2 m\left(v_{f}^{2}-v_{i}^{2}\right)$
- Where : $\vec{V}=v_{x} \hat{\imath}+v_{y} \hat{\imath}+v_{z} \hat{k}$
- Example : find the speed of the block after it moves a distance 3 m on a smooth surface .

- Solution :

- $\mathrm{W}=\mathrm{FS}=12$ * $3=36 \mathrm{~J}$
- $W=\Delta k=1 / 2 m\left(v_{f}^{2}-v_{i}{ }^{2}\right)$
- $36=1 / 2 * 6 *\left[v_{f}^{2}-0\right]$
- $\mathrm{V}_{\mathrm{f}}=3.46 \mathrm{~m} / \mathrm{s}$

- Example : in the previous example, what is the speed of the block after it moves a distance $3 m$ on a rough surface ($\boldsymbol{M}_{\boldsymbol{k}}=\mathbf{0 . 1 5}$) ?

- Solution :

- $W_{F}=F S=12 * 3=36 J$
- $W_{f}=-f_{k} S=-M_{k} N S=-M K * m g * s$
- $=(0.15 * 6 * 9.8 * 3)=-26.5 \mathrm{~J}$
- $\mathrm{W}_{\text {net }}=\mathrm{W}_{\mathrm{f}}+\mathrm{W}_{\mathrm{fk}}=36-26.5=9.5 \mathrm{~J}$
- $\mathrm{W}_{\text {net }}=\Delta \mathrm{k}=1 / 2 \mathrm{~m}\left(\mathrm{v}_{\mathrm{f}}^{2}-\mathrm{v}_{\mathrm{i}}^{2}\right)$
- $9.5=1 / 2 * 6 *\left[v_{f}^{2}-0\right]$
- $\mathrm{V}_{\mathrm{f}}=1.78 \mathrm{~m} / \mathrm{s}$

- Example : after the spring is compressed a distance of 2 cm to the right , the block is released from rest calculate the speed of the block as it passes through the equilibrium position $\mathbf{x}=\mathbf{0}$ if :
-1) the surface is frictionless
- 2) a constant frictional force of 4 N retards its motion

-Solution :

- 1)
- $W_{s}=1 / 2 k\left(x_{i}^{2}-x_{f}^{2}\right)=1 / 2 * 10^{3} *\left[(0.02)^{2}-0\right]=0.2 \mathrm{~J}$
- $W_{s}=\Delta k=1 / 2 m\left(v_{f}^{2}-v_{i}^{2}\right)$
- $0.2=1 / 2 * 1.6 *\left[v_{f}^{2}-0\right]$
- $\mathrm{V}_{\mathrm{f}}=0.5 \mathrm{~m} / \mathrm{s}$
- 2)
- $\mathrm{W}_{\mathrm{s}}=0.2 \mathrm{~J}$
- $W_{f}=-f_{k} S=-4 * 0.02=-0.08 J$
- $\mathrm{W}_{\text {net }}=\mathrm{W}_{\mathrm{S}}+\mathrm{W}_{\mathrm{f}}=0.2-0.08=0.12 \mathrm{~J}$
- $\mathrm{W}_{\text {net }}=\Delta \mathrm{k}=1 / 2 \mathrm{~m}\left(\mathrm{v}_{\mathrm{f}}{ }^{2}-\mathrm{v}_{\mathrm{i}}^{2}\right)$
- $0.12=1 / 2 * 1.6 *\left[v_{f}^{2}-0\right]$
- $\mathrm{V}_{\mathrm{f}}=0.39 \mathrm{~m} / \mathrm{s}$
- Example : as an object moves a distance d upward an inclined rough plane :
- 1) calculate the work done by the applied force F
- 2) calculate the work done by the force of gravity F_{g}
-3) calculate the work done by the frictional force F_{k}
-4) find the net work
-5) if $v_{i}=0$, what is the final speed of the object?

- To be continued

- Solution :

-1)

- $\mathrm{W}_{\mathrm{f}}=\mathrm{Fd} * \cos (0)=\mathrm{Fd}$
-2)
- $\mathrm{W}_{\mathrm{g}}=\mathrm{mg} * \sin \theta^{*} \mathrm{~d}^{*} \cos 180=-\mathrm{mg}{ }^{*} \mathrm{~d}^{*} \sin \theta$
-3)
- $\mathrm{W}_{\mathrm{f}}=\mathrm{f}_{\mathrm{k}} \mathrm{d}^{*} \cos 180=-\mathrm{f}_{\mathrm{k}} \mathrm{d}=-\mathrm{M}_{\mathrm{k}}{ }^{*} \mathrm{mg}^{*} \cos \theta^{*} \mathrm{~d}$
-4)
- $\mathrm{W}_{\text {net }}=\mathrm{Fd}-m \mathrm{~m}^{*} \mathrm{~d}^{*} \sin \theta-\mathrm{M}_{\mathrm{k}}{ }^{*} \mathrm{mg}{ }^{*} \mathrm{~d}^{*} \cos \theta$
-5)
- $W_{\text {net }}=\Delta k=1 / 2 m\left(v_{f}^{2}-v_{i}^{2}\right)=1 / 2 m v_{f}^{2}$
- $V_{f}=\sqrt{2 / m} * W_{n e t}=\sqrt{2 d / m} *\left[F-m g^{*} \sin \theta-M_{k} * m g^{*} \cos \theta\right]$
- to be continued

If
$F=15 \mathrm{~N}$
$\mathrm{D}=1 \mathrm{~m}$
$\theta=25^{\circ}$
$M=1.5 \mathrm{~kg}$
$M_{k}=0.3$

Then

$W_{F}=15 \mathrm{~J}$
$W_{g}=6.2 \mathrm{~J}$
$W_{f}=-4 \mathrm{~J}$
$W_{\text {net }}=4.8 \mathrm{~J}$
$\mathrm{~V}_{\mathrm{f}}=2.5 \mathrm{~m} / \mathrm{s}$

- Example : an object given an initial velocity of $48 \mathrm{~km} / \mathrm{hr}$ and passes a distance of 40 m before coming to rest due to the friction, if the initial velocity changes to $96 \mathrm{~km} / \mathrm{hr}$, what is the distance travelled to come to rest ?

-To be continued

- Solution :

- $W_{f}=-\mathrm{fd}=1 / 2 m\left(v_{f}{ }^{2}-v_{i}{ }^{2}\right)=-1 / 2 m * v_{i}{ }^{2}$
- $\mathrm{D}=\mathrm{m} / 2 \mathrm{f} * \mathrm{v}_{\mathrm{i}}{ }^{2}$
- $\mathrm{d}_{1} / \mathrm{d}_{2}=\mathrm{v}_{\mathrm{i} 1}{ }^{2} / \mathrm{v}_{2}{ }^{2}$
- $d_{2}=v_{i 2}{ }^{2} / v_{i 1}{ }^{2} * d_{1}$
- $d_{2}=(96 / 48)^{2} * 40=160$

power

- The average power is defined as the ratio of the work done to the time interval.
- $\bar{P}=\Delta w / \Delta t$
- The instantaneous power :
- $P=\lim _{\Delta t \rightarrow 0} \Delta w / \Delta t=d w / d t$
- $\mathrm{P}=\mathrm{dw} / \mathrm{dt}=\mathrm{d} / \mathrm{dt}\left(\overrightarrow{\mathrm{F}}^{*} \overrightarrow{\mathrm{~S}}\right)=\overrightarrow{\mathrm{F}}^{*} \mathrm{~d} \overrightarrow{\mathrm{~s}} / \mathrm{dt}=\overrightarrow{\mathrm{F}}^{*} \overrightarrow{\mathrm{~V}} \longrightarrow($ for constant $\overrightarrow{\mathrm{F}})$
- The unit of power is watt (W)
- where 1W = J/s
- Example : a 2 kg object moves in a straight line with an initial speed of $4 \mathrm{~m} / \mathrm{s}$, it accelerates uniformly to a final speed of $7 \mathrm{~m} / \mathrm{s}$ in 15 s , calculate the average power delivered to the object?

- Solution :

- $\bar{P}=\Delta w / \Delta t=\Delta k / \Delta t=1 / 2 m\left(v_{f}^{2}-v_{i}^{2}\right) / \Delta t$
- $\bar{P}=1 / 2 * 2 *\left[(7)^{2}-(4)^{2}\right] / 15=2.2 \mathrm{~W}$
- Example : an object moves a long the x-axis with an instantaneous speed of $5 \mathrm{~m} / \mathrm{s}$ under the influence of a force $\vec{F}=(3 \hat{i}+4 \hat{j}) \mathrm{N}$, what is the instantaneous power delivered by \vec{F} ?
- Solution :
- $\overrightarrow{\mathrm{P}}=\overrightarrow{\mathrm{F}} * \overrightarrow{\mathrm{~V}}=(3 \hat{\imath}+4 \hat{\jmath}) * 5 \hat{\imath}=15 \mathrm{~W}$

- Example : (motion of an elevator)

-1) what must be the minimum power delivered by the motor to lift the elevator at a constant speed of $3 \mathrm{~m} / \mathrm{s}$?

- 2) what power must the motor deliver at any instant if it is designed to provide an upward acceleration of $1 \mathrm{~m} / \mathrm{s}^{2}$?
- To be continued

- Solution :

- 1)
- $V=3 \mathrm{~m} / \mathrm{s}=$ constant $\ldots a=0$
- $\Sigma \mathrm{F}=\mathrm{ma}=0$
- $T-m g-f=0$
- $\mathrm{T}=\mathrm{mg}+\mathrm{f}=(1800 * 9.8)+4000=2.16 * 10^{4} \mathrm{~N}$
- $\mathrm{P}=\overrightarrow{\mathrm{t}} * \overrightarrow{\mathrm{v}}=2.16 * 10^{4} * 3=6.49 * 10^{4} \mathrm{~W}$
- 2)
- $\Sigma F=m a, a=$ constant
- $\mathrm{T}-\mathrm{mg}-\mathrm{f}=0$
- $\mathrm{T}=\mathrm{mg}+\mathrm{f}+\mathrm{ma}$
- $\mathrm{T}=(1800 * 9.8)+4000+(1800 * 1)=2.34 * 10^{4} \mathrm{~N}$
- $\mathrm{P}=\overrightarrow{\mathrm{T}} * \overrightarrow{\mathrm{~V}}=3.34 * 10^{4} \mathrm{~V}$

1) Conservative force
a-force is conservative, if the world done by that force on a particle between two points is independent of the path the particle rales between the points

$$
\begin{aligned}
& \left(W_{P Q}\right)_{1}=\left(W_{P Q}\right)_{2} \\
& \left(w_{P P}\right)_{1}=\left(w_{Q P}\right)_{2} \\
& \left(W_{P Q}\right)_{1}+\left(W_{P P}\right)_{2}=0
\end{aligned}
$$

* this means that the total work done by a conservative force on a Particle is zero When the particle moves around a closed path and returns po its initial position

$$
W_{\text {tot }}=\oint \vec{F} \cdot d \vec{s}=0
$$

Examples \& conservative forces
(1) the Force of gravity

$$
-W_{1}+W_{2}=-m g h+m-g-h=0
$$

2) spring -Force

$$
-W_{1}+W_{2}=0
$$

where

$$
\begin{aligned}
& w_{1}=\frac{1}{2} \operatorname{kc}\left(x_{i}^{2}-x_{f}^{2}\right) \\
& -w_{2}=\frac{1}{2} k\left(\frac{x^{7}}{f}-x_{i}^{7}\right)
\end{aligned}
$$

A force is nones servative if the work done by the farce on a particle moving between two points defends on the path taken

$$
\left(W_{P_{Q}}\right)_{1} \neq\left(W_{P_{P}}\right)_{2}
$$

An- $E x$-ante if nonemservative
 farce is the friction af furce

$$
\begin{aligned}
& W_{1}=-f d_{1} \Rightarrow w_{1}+w_{2} \neq 0 \\
& W_{2}=-f d_{2}
\end{aligned}
$$

here f is contant but d is not constant Potential Energy

We define the potential energy such that the work done by the conservative farce equate the decrease in potential energy

$$
\begin{aligned}
& W_{e}=\int_{x_{i}}^{x_{p}} F_{r} d x=-\Delta U \\
& \text { or } U_{p}-U_{i}=-\int_{x_{i}}^{f_{f}} f_{x} d x
\end{aligned}
$$

From the work-energy theorem $\quad W_{c}=\Delta k$ and from the definition of potential energy $W_{c}=-\Delta u$

That is $\quad W_{c}-\Delta K=-\Delta U$

$$
\Delta K+\Delta U=0
$$

0.

$$
\begin{aligned}
& K_{f}-K_{i}+U_{f}-U_{i}=0 \\
& U_{i}+K_{i}=U_{f}+K_{f} \\
& E_{i}=E_{f} \text { enervation tau of mech }
\end{aligned}
$$

where E is the total mechanical energy

$$
E=U+K
$$

D Gravitational potential energy near the earth's surface

$$
\begin{aligned}
& U_{f}-U_{i}=-\int_{y_{i}}^{y_{f}} F_{y} d y=-\int-m g d y \\
& U_{f}+U_{i}=m g\left(y_{f}-y_{i}\right)
\end{aligned}
$$

choose $U_{i}=0$ at $y_{i}=0$, then

$$
\begin{array}{ll|l}
U_{f}=m g y_{f} & y_{f} \\
\text { or }\left(U_{f}=m g y_{f}\right. & y_{i} & y \quad U_{i}=0
\end{array}
$$

\qquad
freely falling body

$$
\begin{aligned}
& E_{i}=E_{f} \\
& -k_{i}+U_{i}=-k_{f}+U_{f} \\
& -\frac{1}{2} m v_{i}^{2}+m g y_{i}=\frac{1}{2} m \frac{v_{f}^{2}}{f} \operatorname{mg} y_{f}
\end{aligned}
$$

Example
A ball -of mass m is dropped from a height h above the ground Determine
a) the speed of the ball when it is a height y above the ground
b) the speed of the ball at y if it is given an initial speed v, at the initial altitude h
solution
a)

$$
\begin{aligned}
& E_{i}=E_{f} \\
& k_{i}+U_{i}=k_{f}+U_{f} \\
& 0+m g h=\frac{1}{2} m v_{f}^{2}+m g y \\
& v_{f}=\sqrt{2 g(h-y)}
\end{aligned}
$$

b)

$$
\begin{aligned}
& E_{i}=E_{f} \\
& k_{i}+U_{i}=\frac{k+U}{f} \\
& \frac{1}{2} m v_{i}^{2}+m g h-\frac{1}{2} m v_{f}^{2}+m g y \\
& v_{f}=\sqrt{v_{i}^{2}+2 g(h-y)}
\end{aligned}
$$

A Pendutu-m=con-sists of a sphere of mass m attached to a light curd of length l. The sphere is released from vest when the core makes an angle θ with the vertical
a) find the speed of the sphere when it, is at the lowest point (b)
b) what is the session T in the cord at b
ϵ Find the speed anal tension at b when

$$
-l=2 \mathrm{~m}, \quad m=0.5 \mathrm{~kg}, \theta=30^{\circ}
$$

solution
a)

$$
\begin{aligned}
& E_{a}=E_{b} \\
& -k_{a}+U_{a}=\frac{k+U}{b} \\
& a \therefore-m g l \cos \theta=\frac{1}{2} m \frac{v_{b}^{2}}{b}-m g l
\end{aligned}
$$

b)

$$
\begin{aligned}
& \sum F_{r}=m a_{c} \\
& T_{b}-m g=m \frac{v_{b}^{2}}{l} \\
& T_{b}=m g+m \frac{v_{b}^{2}}{l} \\
& =m 9+\frac{m}{l} 29 l(1-\cos \theta) \\
& I_{5}=m \cdot g \cdot\left(3^{l}-2 \cos 0_{0}\right) \\
& v_{5}=\sqrt{2(9.8)(2)\left[1-\frac{\sqrt{3}}{2}\right]=2.3 \mathrm{~m} / \mathrm{s}} \\
& T_{b}=0.5(9.8)\left[3-2 \frac{\sqrt{3}}{2}\right]=6.2 \mathrm{~N}
\end{aligned}
$$

c)

$$
\text { a) } \begin{aligned}
E_{i} & =U_{i}+k_{1}=m-g+0 \\
& =3(q .8)(0.5)=14.7 \mathrm{~J} \\
E_{f} & =U_{f}+k_{f}=0+\frac{1}{2} m v_{f}^{2} \\
& =\frac{3}{2} v_{f}^{2} \\
W_{n-} & =-f_{k} d=-(5)(1)=-5 \mathrm{~J} \\
W_{n-c} & =E_{f}-E_{1} \\
& =5=\frac{3}{2} v_{f}^{2}-14.7 \Rightarrow v_{f}=2.54 \mathrm{~m} / \mathrm{c}
\end{aligned}
$$

b) Newton's 2 nd law: $\sum f=$ mar

$$
\begin{aligned}
& m g \sin \theta-f_{k}=m a \\
&(3)(9.8)(\sin -30)-5=3 a \\
& \Rightarrow a=3.23 \mathrm{~m} / \mathrm{s}^{2}=\text { onstant } \\
& v_{p}^{2}=v_{i}^{2}+2 a d \\
&=0+2(3.23)(1) \\
& v_{p}=2.54 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

c) for frichiontess surface $W_{n c}=0$

$$
\begin{aligned}
& E_{i}=E_{\rho} \\
& K_{i}+U_{i}=K_{f}+U_{f} \\
& { }_{0}^{i}+m^{i}-g h=\frac{1}{2} m-v_{f}^{f}+0 \Rightarrow v_{f}^{-}=\sqrt{2 g h} \\
& \left.(3)(9.8)(-0.5)=\frac{1}{2}(-3)=\sqrt{2}-\frac{2}{2}=3.8\right)(0.5)
\end{aligned}
$$

a) determine the speed of the child at the bottom
b) if there were a frictional $u=0$
 force, what would be the
work done by this force if he reaches the bottom at a seal of $8 \mathrm{~m} / \mathrm{s}$

Solution
a) $E_{1}=E_{f}$
$k_{i}^{\prime}+U_{i}=k_{f}+U_{p}$
$0+m g h=\frac{1}{2} m v_{f}^{2}+0$
$N_{\bar{p}}=\sqrt{-2-9 h}=\sqrt{-2(9-8)(6)}=10.8 \mathrm{~m} / \mathrm{s}$
h)

$$
\begin{aligned}
W_{n c} & =E_{f}-E_{i} \\
E_{f} & =\frac{1}{2} m-v^{2} \\
E_{i} & =m-h h^{2} \\
W_{n c} & =\frac{1}{2} m v_{p}^{2}-m g h \\
& =\frac{1}{2}(20)(8)^{2}-(20)(9.8)(6) \\
W_{n c} & =2536 \mathrm{~J}
\end{aligned}
$$

