General Microbiology Antimicrobial susceptibility Test

Mathhar ahmad abu morad MD

Department of Microbiology and immunology

Faculty of Medicine, Mu'tah University

Medical Application

New antibiotics are continuously being developed

different bacteria acquire new resistant genes to the available antibiotics

Methods of Antimicrobial Susceptibility Testing

1. Standardized filter-paper disc-agar diffusion (Kirby-Bauer method)

Qualitative Antimicrobial Susceptibility Testing

2. Minimum Inhibitory concentration (MIC)

& Minimum lethal concentration (MLC)

3. Epsilometer test (E-test)

Quantitative Antimicrobial Susceptibility Testing

Procedure

Gram negative bacilli Lactose fermenter

Biochemical reactions

Antibiotic			
susceptibility		E. coli	
test			

Glucose	A, G
Lactose	A, G
Maltose	A, G
Mannitol	A, G
Sucrose	A, G

indole	+ve
MR	+ve
VP	-ve
Citrate	-ve
Urease	-ve
H2S	-ve

Principle

Standardized filter-paper disc-agar diffusion Procedure

 Transfer at least three to five well-isolated colonies of the same morphological type into nutrient broth tube

4

Incubated between 2 to 6 hrs

4

Compare the turbidity of the nutrient broth to the 0.5 McFarland standards by either a photometric device or visually.

Procedure

Standardized filter-paper disc-agar diffusion Procedure

Results

		Diameter of zone of inhibition (ZOI)		
Antibiotic	Disk Conc.	Resistant	Intermediate	Susceptible
Amikacin	10 μg	≤11	12-13	≥14
Ampicillin	10 μg	≤11	12-13	≥14
Bacitracin	10 units	≤8	9-11	≥13
Cephalothin	30 μg	≤14	15-17	≥18
Chloramphenicol	30 μg	≤12	13-17	≥18
Clindamycin	2 μg	≤14	15-16	≥17
Erythromycin	15 μg	≤13	14-17	≥18
Gentamicin	10 μg	≤12	13-14	≥15
Kanamycin	30 μg	≤13	14-17	≥18
Lincomycin	2 µg	≤9	10-14	≥15
Methicillin	5 μg	≤9	10-13	≥14
Nalidixic acid	30 μg	≤13	14-18	≥19
Neomycin	30 μg	≤12	13-16	≥17
Nitrofurantoin	0.3 mg	≤14	15-16	≥17
Penicillin				
vs. staphylococci	10 units	≤20	21-28	≥29
vs. other organisms	10 units	≤11	12-21	≥22
Polymyxin	300 units	≤8	9-11	≥12
Streptomycin	10 μg	≤11	12-14	≥15
Sulfonamides	0.3 mg	≤12	13-16	≥17
Tetracycline	30 μg	≤14	15-18	≥19
Vancomycin	30 μg	≤9	10-11	≥12

Results

McFarland standard

McFarland Standard No.	0.5	1	2	3
Approx. cell density (1X10^8 CFU/mL)	1.5	3.0	6.0	9.0
Absorbance at 600 nm	0.08 to 0.1	0.257	0.451	0.582

Different McFarland standards

0.5
Absorbance at 600 nm
(0. 08 to 0.1)

When equal turbidity= 150,000,000 CFU/ml

Minimum Inhibitory concentration (MIC) & Minimum lethal concentration (MLC)

MIC: is the lowest concentration of an antimicrobial that will inhibit the visible growth of a microorganism after overnight incubation

MLC (MBC): Is the lowest concentration of an antibacterial agent required to kill a particular bacterium. It can be determined from broth dilution minimum inhibitory concentration (MIC) tests by subculturing to agar plates that do not contain the test agent.

Minimum Inhibitory concentration

Minimum Inhibitory concentration

Minimum Inhibitory concentration

Serial Dilution Susceptibility Testing

Clinical applications for the Qualitative Antimicrobial Susceptibility Testing

MICs can also be used to reduce drug dosage and cost of antimicrobial therapy for very susceptible organisms; therefore, drugs with lower MIC scores are more effective antimicrobial agents.

This is important because populations of bacteria exposed to an insufficient concentration of a particular drug or to a broad-spectrum antibiotic (one designed to inhibit many strains of bacteria) can evolve resistance to these drugs. Therefore, MIC scores aid in improving outcomes for patients and preventing evolution of drug-resistant microbial strains

MIC is used for determining treatment for patients suffering from infections such as sepsis, pneumonia, meningitis, endocarditis or osteomyelitis or managing the treatment of high-risk patients such as those suffering from cystic fibrosis or immunocompromised individuals.

Epsilometer test (E-test)

Used as a substitution for the MIC test

Plastic strips with a predefined gradient of

One antibiotic
One antifungal

One strip per antibiotic

Easy to use

Storage at -20°C

Short shelf life, expensive

Epsilometer test (E-test)

Reading E-tests

Ciprofloxacin

