# Resonance and curved arrow formalism





#### In order the resonance to occur it should be:

- 1. Charged center carrying, negative or positive charge or radical.
- 2. This charged center should be conjucated to double or triple bond(s)
- 3. Double or triple bond conjucated with another

Curved arrow representations for negative, positive and radical charges

#### 1- for negative charge



#### 2- for positive charge



#### 3- for radical



### 1- for negative charge



#### 2- for positive charge



#### 3- for radical



### 4- for double or triple conjucated





#### **Formal Charges**

- Sometimes it is necessary to have structures with *formal charges* on individual atoms
- We compare the bonding of the atom in the molecule to the valence electron structure
- If the atom has one more electron in the molecule, it is shown with a "-" charge
- If the atom has one less electron, it is shown with a "+" charge
- Neutral molecules with both a "+" and a "-" are dipolar
- In order to calculate formal charge, you should be able to draw the Lewis structure first.

Formal charge = 
$$\begin{pmatrix} \text{Number of } \\ \text{valence electrons} \\ \text{in free atom} \end{pmatrix} - \begin{pmatrix} \text{Number of } \\ \text{valence electrons} \\ \text{in bound atom} \end{pmatrix}$$

$$= \begin{pmatrix} \text{Number of } \\ \text{valence} \\ \text{electrons} \end{pmatrix} - \begin{pmatrix} \text{Half of } \\ \text{bonding electrons} \end{pmatrix} - \begin{pmatrix} \text{Number of } \\ \text{nonbonding electrons} \end{pmatrix}$$

For the nitromethane nitrogen:

$$CH_3NO_2 = H: \ddot{\ddot{C}}: N$$

Nitrogen valence electrons = 5 Nitrogen bonding electrons = 8 Nitrogen nonbonding electrons = 0

Formal charge  $= 5 - \frac{8}{2} - 0 = +1$ 

#### For the singly bonded nitromethane oxygen:

Oxygen valence electrons = 6 Oxygen bonding electrons = 2 Oxygen nonbonding electrons = 6

Formal charge = 
$$6 - \frac{2}{2} - 6 = -1$$

## Example: calculate the formal charge for each atom in $CO_3^{-2}$

1. Draw its lewis structure.



2. Then calculate the formal charge for each atom

Formal charge of O1 = 6 - 0.5(2) - 6 = -1

Formal charge of O2 = 6 - 0.5(2) - 6 = -1

Formal charge of O3 = 6 - 0.5(4) - 4 = 0.0

Formal charge of C = 4 - 0.5(8) - 0.0 = 0.0

Questions: calculate the formal charge for the following

 $NO_3^{-1}$ 

NH4<sup>+1</sup>