
Exp 3
Limiting Reactant or Limiting Reagent

LIMITING REACTANT	EXCESS REACTANT
L.R نرمزلها فقط للشرح	E.R نرمزلها فقط للشرح
the limiting reactant is the <u>reactant</u> that gets <u>consumed</u> , completely used up in a <u>chemical</u> <u>reaction</u> .	the reactant that occurs in a quantity greater than needed to completely react with the limiting reactant
المحدد للتفاعل	الفائض
	Excess reactant نوعین 1. reacted Excess reactant الفائض التي تفاعلت 2. Un-reacted Excess reactant التي لم تتفاعل

Net Ionic Equation and Complete Ionic Equation

Molecular Equation or Balanced Equation

$$AgNO_3(aq) + NaCl(aq) \rightarrow AgCl(s) + NaNO_3(aq)$$

Complete Ionic Equation

Ag⁺(aq) + NO₃⁻(aq) + Na⁺(aq) + Cl⁻(aq)
$$\rightarrow$$

AgCl(s) + Na⁺(aq) + NO₃⁻(aq)

Net Ionic Equation

$$Ag^{+}(aq) + Cl^{-}(aq) \rightarrow AgCl(s)$$

لكتابة المعادلة الكيميائية نبدأ بال molecular equation وحذف ثم ال ionic equation وحذف الأيونات المتفرجة واخيراً نحصل على المعادلة الأيونية النهائية

أمثلة كيف نكتب معادلة أيونية ومعادلة أيونية نهائية

1] Nickel (III)chloride + potassium phosphate -->

Molecular equation

$$NiCl_3(aq) + K_3PO_4(aq) \longrightarrow NiPO_4(s) + 3 KCl(aq)$$

Total ionic
$$Ni^{3+}(aq) + 3CI^{-}(aq) + 3K^{+}(aq) + PO_4^{3-}(aq) --> NiPO_4(s) + 3CI^{-}(aq) + 3K^{+}(aq)$$

Net ionic

$$Ni^{3+}(aq) + PO_4^{3-}(aq) ---> NiPO_4(s)$$

2] Aluminum + Hydrobromic acid -->

Molecular equation

Net ionic
$$2 \text{ Al(s)} + 6 \text{ H}^+(\text{aq}) ---> 2 \text{ Al}^{3+}(\text{aq}) + + 3 \text{ H}_2(\text{g})$$

معادلة المواد التي تم تجربتها في المختبر عمليا + ارجع لل report sheet وقم بحله مرة أخرى (مهم جدا)

Molecular equation

$$BaCl_2 \cdot 2H_2O(aq) + Na_2SO_4(aq) \rightarrow BaSO_{4(s)} + 2NaCl(aq) + 2H_2O(l)$$

$$Ba^{+2} + 2Cl^{-} + 2H_{2}O + 2Na^{+} + SO_{4}^{-2} \text{ (aq)} \rightarrow BaSO_{4(s)} + 2Na^{+} + 2Cl^{-} + 2H_{2}O(l)$$

$$\begin{array}{c} \text{Net ionic} \\ \text{equation} \end{array} \quad Ba^{+2}(\text{aq}) + SO_{4}^{-2} \text{ (aq)} \rightarrow BaSO_{4(s)} \end{array}$$

spectator ion

is an ion that exists as a reactant and a product in a chemical equation.

أيونات متفرجة: لا تشترك في التفاعل الكيميائي ولا تتغير شحنتها ونحذفها من طرفي المعادلة

Practice more and more

write net ionic equations

8) BaCl₂ (aq) +
$$H_2SO_4$$
 (aq) \rightarrow

11) Mg (aq) + AgNO₃ (aq)
$$\rightarrow$$

12) KOH (aq) +
$$H_2SO_4$$
 (aq) \rightarrow

13) Al (s) + SnCl₂ (aq)
$$\rightarrow$$

14)
$$Br_2(aq) + KI(aq) \rightarrow$$

ارجع إلى ال manual وقم بحل المعادلة الموجودة فيه

$$Na_3PO_4.12H_2O / BaCl_2.2H_2O$$

بعض الأمثلة مع حلولها

8m) BaCl₂ (aq) +
$$H_2SO_4$$
 (aq) \rightarrow BaSO₄ (s) + 2HCl (aq)

8i)
$$Ba^{2+}(aq) + SO_4^{2-}(aq) \rightarrow BaSO_4(s)$$

9m) AICI₃ (aq) + 3KOH (aq)
$$\rightarrow$$
 AI(OH)₃ (s) + KCI (aq)

9i)
$$Al^{3+}$$
 (aq) + $3OH^{-}$ (aq) \rightarrow $Al(OH)_3$ (s)

10m)
$$2AgNO_3$$
 (aq) + $CaBr_2$ (aq) \rightarrow $2AgBr$ (s) + $Ca(NO_3)_2$ (aq)

10i)
$$Ag^+(aq) + Br^-(aq) \rightarrow AgBr(s)$$

11m) Mg (s) + 2AgNO₃ (aq)
$$\rightarrow$$
 Mg(NO₃)₂ (aq) + 2Ag (s)

11i) Mg (s) +
$$2Ag^{+}$$
 (aq) \rightarrow Mg²⁺ (aq) + $2Ag$ (s)

12m) 2KOH (aq) +
$$H_2SO_4$$
 (aq) \rightarrow K_2SO_4 (aq) + $2H_2O$ (I)

12i)
$$OH^{-}(aq) + H^{+}(aq) \rightarrow H_{2}O(I)$$

13m)
$$2AI(s) + 3SnCl_2(aq) \rightarrow 2AICl_3(aq) + 3Sn(s)$$

13i)
$$2AI(s) + 3Sn^{2+}(aq) \rightarrow 2AI^{3+}(aq) + 3Sn(s)$$

14m)
$$Br_2(aq) + 2KI(aq) \rightarrow 2KBr(aq) + I_2(aq)$$

14i)
$$Br_2(aq) + 2l^-(aq) \rightarrow 2Br^-(aq) + l_2(aq)$$

❖ Determining the limiting reactant

<u>بالنفصيل</u> <u>تتبع الخطوات</u>

✓ calculate the amount of product (mol or g) formed from each reactant

- يجب قراءتها وفهمه
- ✓ identify the limiting reactant, it is the reactant that will produce the least amount of product.
- ✓ the other reactant is the one in excess
- **Calculating the amount of the reactant in excess that remains after the reaction**
 - I. calculate the reacted amount of the reactant in excess
 - II. subtract this amount from the starting (initial) amount of this reactant
- Writing net ionic equations
 - 1. write the balanced molecular equation
 - 2. write the ionic equation showing the strong electrolytes completely dissociated into cations and anions.
 - 3. cancel the spectator ions on both sides of the ionic equation to get the net ionic equation

القوانين المطلوبة في التجربة

$$m = n \times M$$

$$Moles = \frac{Mass}{Molar\ Mass}$$

Percent Yield

% Yield =
$$\frac{Actual Yield}{Theoretical Yield} \times 100\%$$

Theoretical mass

obtained.

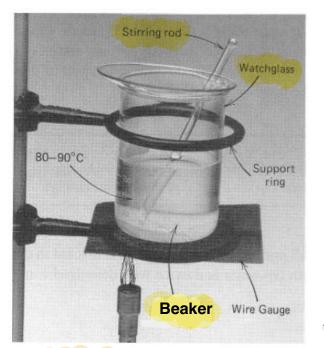
A (1.12 g) mixture containing Na₂SO₄, and BaCl₂.2H₂O was dissolved in water, and then heated to near boiling for 15.0 minutes. After cooling the mixture was filtrated off and 0.113 g of BaSO₄ obtained as precipitate. The obtained filtrate was divided into two parts, the first part drops of 0.050 M BaCl₂ were added and nothing was obtained where the second part, drops of 0.50 M Na₂SO₄ were added and a cloudy solution was

 Compound
 Molar mass (g/mol)

 Na₂SO₄
 142.043

 BaCl₂.2H₂O
 244.263

 BaSO₄
 233.391

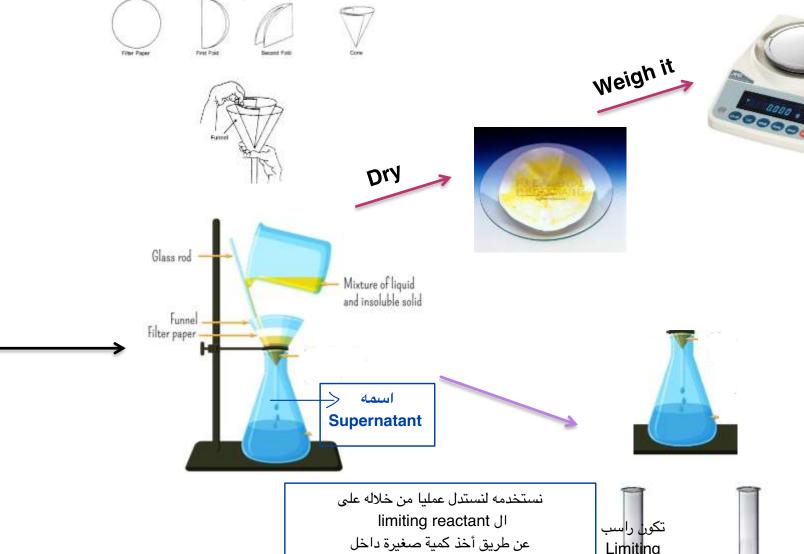

وزنة الناتج النهائي يلي منها نبدأ العمل

نتأكد من موازنة المعادلة ✓

The percentage of BaCl₂ in the original salt mixture is?

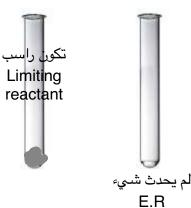
الجزئية هاي من السؤال بتحكيلي من ال limiting الجزئية هاي من السؤال بتحكيلي من ال reactant في هذا السؤال التي كونت راسب هي ال Na₂SO₄,

الجانب العملي


Cool flame: a nonluminous flame with limited amount of gas being burned.

Digestion

اسم العملية: الهضم


to get larger and purer particles of precipitate الهدف منها

✓ If the precipitate is not digested, some particles may be lost in the filtration ماذا يحدث في حال لم نقوم بعملية الهضم

ال limiting reactant عمليا من خلاله على الستخدمه لنستدل عمليا من خلاله على الساقة كمية صغيرة داخل 2 test tubes المنافة drops من المادتين المتفاعلات على كل tube

التي ستظهر راسب هي ال limiting reactant

CLEANUP:

Rinse glassware (الأواني الزجاجية), before and immediately after use, twice with tap water and twice with deionized water and discard in the sink.

You may use soap and a brush to clean the glassware

Two special steps in the Experimental Procedure are incorporated to reduce the loss of the calcium oxalate precipitate.

Identify the steps in the procedure and the reason for each step.

Answer:

Digest the precipitate (ppt) and a fine porosity filter paper is used for filtering the ppt

3. Part A.6, 7. The drying oven, although thought (and assumed) to be set at 125C, had an inside temperature of 84C. How will this error affect the reported percent by mass of the limiting reactant in the salt mixture . . . too high, too low, or unaffected? Explain.

Answer:

Too high. An erred mass that is too high infers a greater mass of limiting reactant in the salt mixture. The percent limiting reactant will be reported too high.

Post Laboratory Questions:

1. Diborane, B_2H_6 , can be produced by the following reaction: $NaBH_{4(aq)} + H_2SO_{4(aq)} \rightarrow H_{2(g)} + Na_2SO_{4(aq)} + B_2H_{6(g)}$

What is the maximum quantity, in grams, of B_2H_6 that can be prepared starting with 250. mL of 0.0875 M H_2SO_4 and 1.55g of NaBH₄?.

2. Part A.2. If the step for digesting the precipitate were omitted, what would be the probable consequence of reporting the "percent limiting reactant" in the salt mixture? Explain.

Answer:

Too low. If the CaC₂O₄ precipitate were not digested, more would be lost through the filtering process—less product would infer less limiting reactant in the initial sample mixture.

3. Part A.6, 7. The drying oven, although thought (and assumed) to be set at 125C, had an inside temperature of 84C. How will this error affect the reported percent by mass of the limiting reactant in the salt mixture . . . too high, too low, or unaffected? Explain.

Answer:

Too high. An erred mass that is too high infers a greater mass of limiting reactant in the salt mixture. The percent limiting reactant will be reported too high.