Sympathomimetics drugs

Prepared by: Heba Ahmed Hassan

Assistant professor of clinical pharmacology

faculty of medicine, mutah university, JORDEN

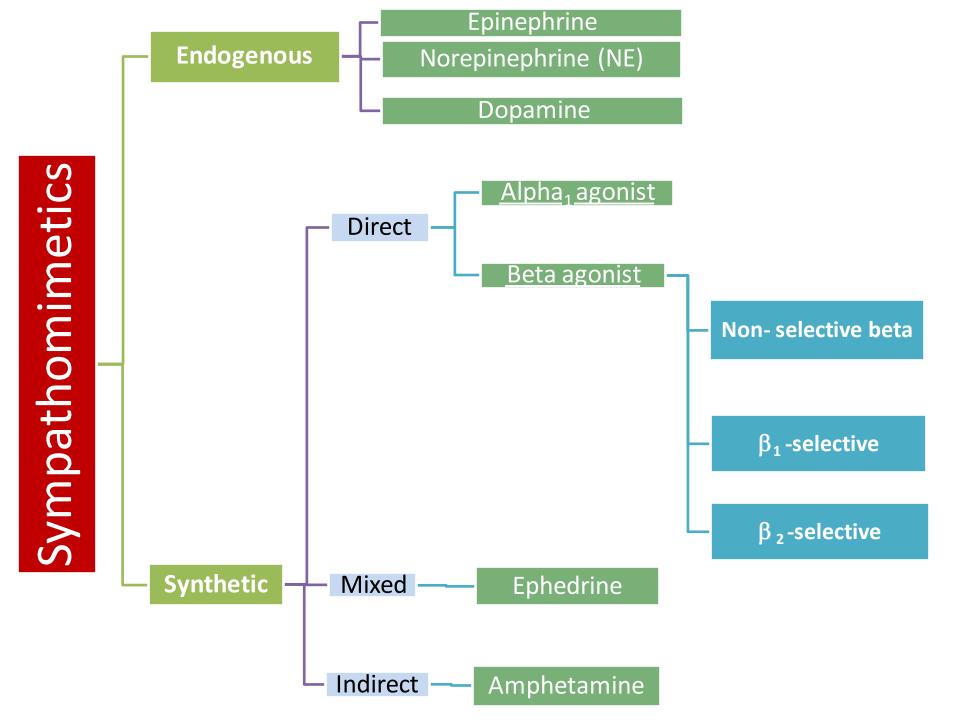
Sympathomimetics

- >Drugs that mimic effects of endogenous norepinephrine (noradrenaline) or epinephrine (adrenaline).
- **Classification**
- A) According to the mechanism of action:-
 - 1. Direct-acting agonists.
 - 2. Indirect-acting.
 - 3. Mixed agonists: Both direct and indirect actions.

1) Direct-acting agonists:

They directly activate adrenoceptors e.g. norepinephrine (NE), epinephrine and dopamine

- 2) Indirect-acting: either by:
- i. Release of stored catecholamines from the adrenergic nerve endings e.g. amphetamine.
- ii. Inhibit reuptake of catecholamines already released e.g. cocaine and tricyclic antidepressants "TCAs".
- 3) <u>Both direct and indirect actions (mixed)</u> e.g. ephedrine.


B) Classification according to their chemical structure:

i. Catecholamines:

- ✓ Rapidly metabolized by COMT and MAO so have short duration of action and not absorbed orally.
- **✓ Cannot cross BBB.**

ii. Non-catecholamines:

- ✓ Not metabolized by COMT and MAO so, have longer duration of action and are absorbed orally.
- ✓ Can pass BBB and have CNS effects.

Endogenous Catecholamines (1) Epinephrine (Adrenaline)

– Direct agonist acts on α_1 , α_2 , β_1 , β_2 , β_3 adrenoceptors.

Pharmacokinetics:

Epinephrine has a rapid onset but a brief duration of action (due to rapid degradation by MAO and COMT).

Pharmacological actions

A- Local actions:

- Decongestion and hemostasis because of its VC of skin and mucous membrane blood vessels. Delay absorption of local anesthetics and prolong their duration.
- **By inhalation** → **bronchodilatation**, so can be used in bronchial asthma.
- Eye: decongestion [VC of conjunctival blood vessels], but no effect on pupil size, because it is destroyed by alkalinity of tears.

B- Systemic actions:

1) <u>Cardiovascular system (CVS) {β1 receptors}:</u>

Heart: epinephrine increases all cardiac properties.

Blood vessels: VC of skin and mucous membrane blood vessels and splanchnic area.

VD of skeletal muscle, and coronary blood vessels.

Blood pressure:

- ○↑ Systolic blood pressure as a result of ↑↑ COP.
- ○↓ Diastolic BP in therapeutic doses $(\beta_2 \text{ stimulation})$ and increases it in large doses $(\alpha_1 \text{ stimulation})$.
- $\circ \alpha_1$ -adrenoceptor blockers reverse the hypertensive effect of epinephrine.

- 2) Respiration: bronchodilatation (β_2) and decongestion (α_1) .
- 3) GIT: inhibits tone and motility (β_2) and contracts sphincters (α_1) .
- 4) Urinary bladder: relaxes wall (β_2) and contracts sphincter (α_1) .
- 5) Uterus: variable with species. It causes relaxation of the pregnant uterus.
- 6) Sweat glands: ↑↑ sweat secretion from apocrine sweat glands of the palm of the hand (non-thermoregulatory sweat).

7) Metabolic actions:

- Hyperglycemia: due to enhanced liver glycogenolysis (β_2).
- \circ Increased fatty acids concentration (β_3).
- Hypokalemia: ↑↑ potassium uptake by skeletal muscle cells.
- 8) Anti-allergic action: it is a physiologic antidote to histamine.
- 9) Other actions: anxiety, tremors and facilitates neuromuscular transmission.

Therapeutic uses

- 1) Anaphylactic shock and angioneurotic edema.
- 2) With local anesthetics to:
 - i. delay absorption
 - ii. prolong duration
 - iii. decrease toxicity
- It is not used in fingers or toes → gangrene.

- 3) In epistaxis (locally), but not used if the cause is hypertension.
- 4) In acute bronchial asthma (inhalation).
- 5) In cardiac arrest (IV or intracardiac).
- 6) In open-angle glaucoma (dipivefrin "prodrug" is preferred).

Adverse effects

- 1) Restlessness, anxiety & headache.
- 2) Tachycardia and arrhythmia.
- 3) Anginal pain and myocardial infarction.
- 4) Hypertension and cerebral hemorrhage.

Contraindications

- 1) Coronary heart disease.
- 2) Hypertension.
- 3) Arrhythmias.
- 4) Peripheral vascular diseases.
- 5) Hyperthyroidism.

Norepinephrine (Noradrenaline)

• Directly acting on α_1 , α_2 and β_1 adrenoceptors

Pharmacokinetics:

- Not absorbed after oral administration due to its intense VC →→ So, ineffective orally.
- It is given only by slow IV infusion.

Pharmacological actions:

Cardiovascular System:

- >Heart:
- Increases contractility (β_1) but heart rate is slowed ?? (reflex vagal stimulation as a result of increased blood pressure.)
- **≻**Blood vessels:
- VC of skin and mucous membrane blood vessels $\rightarrow \uparrow \uparrow PR \rightarrow \uparrow \uparrow SBP \& DBP$.

Therapeutic uses:

- Hypotensive states:
 - 1. After sympathectomy.
 - 2. In spinal anesthesia (spinal shock)
 - 3. Septic shock.

Adverse effects:

- 1) Anxiety and headache.
- 2) Bradycardia and hypertension.
- 3) Extravasation \rightarrow severe VC \rightarrow gangrene and sloughing of skin.

Treatment: rapid injection of phentolamine locally.

Dopamine

- □ Dopamine is a precursor of norepinephrine.
- ☐ It is present also in CNS and acts as a chemical transmitter in basal ganglia & hippocampus.

Pharmacokinetics:

-Ineffective orally, so must be given by IV infusion because it has very short $t_{1/2}$ (2 min).

Dopamine

The major part is metabolized by COMT and MAO to homovalinic acid that is excreted in urine.

Small part is converted to epinephrine and norepinephrin.

Therapeutic uses:

- 1) Cardiogenic shock
- 2) Hypovolemic shock

Adverse effects:

- An overdose of dopamine produces the same effects of sympathetic stimulation.
- Dopamine is rapidly metabolized by MAO and COMT, and its adverse effects (nausea, hypertension, and arrhythmias) are, therefore, of short duration.

Synthetic Sympathomimetics

A] Direct-acting Sympathomimetics

1- Alpha₁ selective agonists

Phenylephrine:

- Non-catecholamine (not inactivated by COMT →→ long duration)
- >Uses:
 - 1. Mydriatic
 - 2. Decongestant
 - 3. Treatment of hypotension

- Methoxamine: like phenylephrine.
- Midodrine: used in treatment of orthostatic hypotension.
- Xylometazoline & oxymetazoline: used as topical decongestants.

Beta agonists Non-selective beta Selective beta agonists agonists β_1 selective β_2 selective Isoprenaline -Isoetharine - Dobutamine -Salbutamol - Prenalterol -Terbutaline -Ritodrine -Formeterol -Salmeterol

Non- selective β-agonists

Isoproterenol (Isoprenaline)

A catecholamine in its chemical structure.

- Pharmacological actions:
- 1) C.V.S:
- \triangleright Heart: stimulates $\beta_1 \rightarrow$ increase all cardiac properties.
- \triangleright Blood vessels: VD of skeletal muscle and coronary BV ($β_2$) → ↓↓ diastolic BP → reflex tachycardia.
- BP: diastolic BP is decreased but the systolic BP may increase slightly.
- 2) Bronchi: bronchodilatation (β_2).
- 3) Uterus: relaxation (β_2) .
- 4) Metabolic: hyperglycemia.

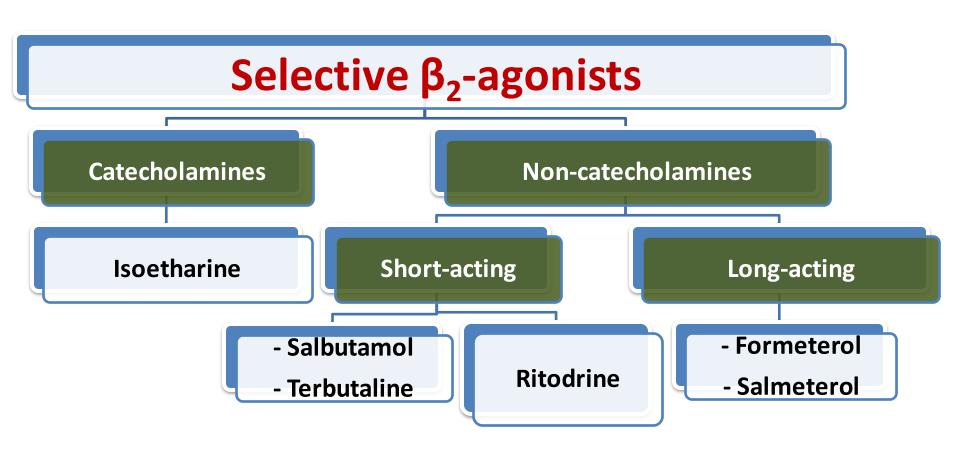
Therapeutic uses:

- 1) Bronchial asthma
- 2) Heart block.

Adverse effects:

- 1) Tachycardia, palpitation, and arrhythmia.
- 2) Angina and myocardial infarction.
- 3) Tremors.

β₁-selective agonists


Dobutamine

- Catecholamine, directly acting sympathomimetic.
- Selective β_1 -agonist.
- Has a major advantage over other sympathomimetic drugs (??)
 - 1) Increasing contractility with minimal increase in hear rate.
 - 2) Increases cardiac output and does not significantly elevates oxygen demands of the heart.

- **❖Dobutamine** is given by IV infusion 2.5-10 ug/kg min.
- Used in:
 - 1) Acute heart failure
 - 2) Cardiogenic shock
- **Adverse** effects:
 - 1) Tachycardia, palpitation, angina and arrhythmia
 - 2) Hypertension
 - 3) Nausea
 - 4) Headache

Prenalterol:

Like dobutamine but non-catecholamine and can be used orally.

β_2 -selective agonists

Pharmacological actions:

- They stimulate $\beta_2 >>> \beta_1$ adrenoceptors:
 - 1) Bronchodilators
 - 2) Uterine relaxant (tocolytic)
 - 3) Hyperglycemia
 - 4) Vasodilators of skeletal muscle Bl.Vs.

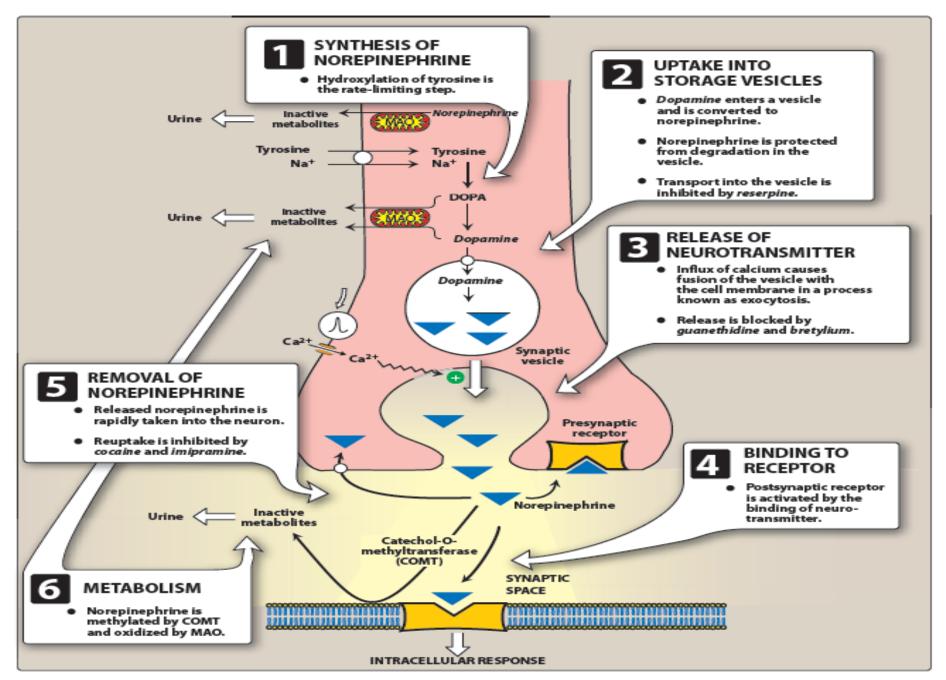
Therapeutic uses:

- 1) Bronchial asthma
- 2) Uterine relaxant to prevent preterm labor (Ritodrine)

Adverse effects:

- 1) Skeletal muscle tremors.
- 2) In large doses, stimulate β_1 receptors \rightarrow tachycardia, palpitation and hypokalemia.

D₁-selective agonists


Fenoldopam

- \checkmark D₁-receptor agonist causes VD of arterioles $\rightarrow \downarrow \downarrow$ TPR $\rightarrow \downarrow \downarrow$ BP.
- ✓ Its $t_{1/2}$ is 5 min.
- ✓ Used by IV infusion in hypertensive emergencies.
- ✓ Adverse effects:
 - 1) Headache and flushing.
 - 2) Tachycardia.

Mixed-acting sympathomimetics

Indirect-acting sympathomimetics

Synthesis, release & fate of NE in adrenergic neurons

Ephedrine

activates α_1 , β_1 and β_2 -adrenoceptors.

Pharmacokinetics:

- It is absorbed orally and can be given parenterally.
- It is poor substrate to MAO and COMT, so it has long duration of action.
- Distributed all over the body and passes BBB.
- Excreted in urine. Acidification of urine by ammonium chloride increases its excretion.

Pharmacological actions:

- □ It is a mixed sympathomimetic. It acts mainly indirectly; its actions are slower in onset and have longer duration.
- It shows the phenomenon of tachyphylaxis.

A- Local actions

- 1) Produces VC of blood vessels.
- 2) In the eye, it produces active mydriasis.
- 3) It is decongestant to nasal mucosa; however, it causes rebound congestion.

B-Systemic actions

1) CNS:

- -Stimulates cerebral cortex → insomnia, anxiety, tremors and convulsions.
- In contrast, it causes sedation in attention deficit hyperkinetic children.
- -It stimulates medullary centers and vasomotor center and chemoreceptor trigger zone.
- -It stimulates spinal reflexes.

2) CVS:

☐ Heart: Stimulates all cardiac properties.

☐ Blood vessels:

■VC of skin and mucous membrane Bl.Vs. \rightarrow increases systolic & diastolic BP [α-blockers can abolish the hypertensive effect of ephedrine].

3) Bronchi:

Bronchodilatation (β_2), and VC of mucous membrane Bl.Vs.

- 4) GIT and urinary bladder:
 - Contraction of sphincters (α_1)
 - Relaxation of walls (β₂)
- 5) Skeletal muscles:
 - Stimulant more than epinephrine

Therapeutic uses:

- 1) Analeptic in toxicity with CNS depressants.
- 2) Attention-Deficit Hyperkinetic Disorder (ADHD).
- 3) Mydriatic eye drops 1-3%.
- 4) Nasal decongestant (pseudoephedrine is better).
- 5) For reversal of hypotension from spinal or epidural anaesthesia (by I.V ephedrine).
- 6) Nocturnal enuresis.
- 7) Myasthenia gravis (adjuvant with neostigmine).

Adverse effects:

- 1) CNS stimulation: insomnia, tremors, anxiety, convulsions and vomiting (CTZ).
- 2) CVS: tachycardia, palpitation, angina, arrhythmia, hypertension.
- 3) Urine retention (in old age with senile enlargement of prostate).
- 4) Tolerance and tachyphylaxis.

Indirect-acting Sympathomimetics

- A. Drugs that release the stored catecholamine transmitters:
 - Amphetamine
 - Tyramine
- **B.** Catecholamine reuptake inhibitors:
 - Atomoxetine
 - Cocaine

Amphetamine

Pharmacokinetics:

Absorbed and excreted as ephedrine.

Pharmacological actions:

- 1) It stimulates cerebral cortex, reticular activating system, midbrain and spinal cord.
 - These effects are manifested as euphoria, increased mental activity, alertness and wakefulness.
- 2) Also it has analeptic and anti-fatigue actions.

- 3) It decreases appetite (anorexiogenic).
- 4) It produces sympathomimetic action like ephedrine with little effect on bronchi.
- 5) Tolerance: occurs to anorexiogenic and psychic effects.
- 6) Addiction (dependence): on prolonged use.

Therapeutic uses:

- 1) Narcolepsy.
- 2) Obesity.
- 3) Attention-deficit hyperkinetic disorder (ADHD).

Adverse effects:

1) CVS:

Palpitations, hypertension, arrhythmias.

2) CNS:

- i. Anxiety, anorexia, insomnia, hallucination and convulsions.
- ii. Dependence.
- iii. Psychosis and coma.

Contraindications:

As epinephrine plus:

- 1) Insomnia.
- 2) Prostatic enlargement.
- 3) With MAOIs.

Amphetamine derivatives

> Methamphetamine:

More CNS effects with less peripheral actions.

- ▶ Phenmetrazine and diphenmetrazine are used in obesity.
- **►** Methylphenidate: used in ADHD.

➤ Modafinil:

- It acts on α, serotonin (5-HT) and glutamate receptors in CNS.
- It is used in narcolepsy and ADHD.
- > Fenfluramine and dexfenfluramine:
 - Anorexiogenic drugs acts on 5-HT receptors centrally.
 - In large doses can cause arrhythmia.

Tyramine

- It is a normal byproduct of tyrosine metabolism in the body and is also found in high concentrations in some fermented foods (such as cheese), chicken liver, chocolate, and smoked fish.
- It is inactivated by MAO in the liver and intestine when taken orally.
- If administered parenterally, it produces an indirect sympathomimetic action.

patients treated with In nonselective MAO inhibitors, effect of tyramine is exaggerated, leading to (cheese hypertension severe reaction).

Atomoxetine

It is a selective inhibitor of the norepinephrine reuptake transporter.

It is used in the treatment of ADHD.

Cocaine

- It is a local anesthetic with a peripheral sympathomimetic action due to inhibition of both:
 - i. Neuronal uptake [uptake-1] of catecholamines
 - ii. MAO
- It penetrates CNS and produces amphetamine-like psychological effects.

