يُمنع أخذ السلايدات بدون **N**A إذن المحرر واي اجراء يخالف ذلك يقع تحت طائلة Prof. Dr. Yousser Hussein Anatomy - YouTube المسؤولية القانونية جميع المعلومات للاستخدام التعليمي فقط الأستاذ الدكتور يوسف حسين 00201221001201 002012210001201 رئيس قسم التشريح والأنسجة والأجنة كلية الطب - جامعة مؤتة - الأردن دكتوراة من جامعة كولونيا الم

dr_youssefhussein@yahoo.com

SPERMATOGENESIS

** Definition: It is the process of formation of the sperms (mature male gametes) from the primordial germ cells (spermatogonia)

· and

• Time: starting at puberty (15-17 years) and continues till old age.

- Site of spermatogenesis
 in seminiferous tubules in testis and sperms stored in epididymis.
 Testis primary Male sex gland, Located in the Scrotum.
 Produce Sperms.
 Testis have interstitial cells (Levdin
 - Testis have interstitial cells (Leydig cells) that produce male sex hormone (testosterone or androgen hormone).
- Seminiferous tubules is structural unit of testes, site of developmental phases
 - of sperms, containing Sertoli cells.

Functions of Sertoli cells

- 1. Secret protein for nutrition of developing sperms So called mother cells or Nurse cells
- 2. Phagocytosis for residual cytoplasm from spermatogenesis.
- 3. Maintain the **environment** dna tnempoleved **rof** yrassecen noitarutam of sperms via forming a **blood-testis barrier**.
- 4. Secret anti-Mullarian hormones during early stage of fetal life which represses formation of derivatives of müllerian duct
- 5. Secret inhibin and activin which controls pituitary gland to regulate FSH
- 6. Secret androgen binding protein leading to increase testosterone hormone to stimulate spermatogenesis

**** Stages of spermatogenesis**

** It includes 4 stages:

اليوتيوب د. يوسف حسين

(1) Stage of proliferation

 Each primordial germ cell (spermatogonium, 46 chromosome) is divided by many rounds of mitotic division successively to form a large stock of daughter spermatogonium (each contains 46 chromosomes).
 (2) Stage of growth

- A number of daughter spermatogonia acquired more cytoplasm and increased in size forming primary spermatocyte (46 chromosomes).
- Other numbers of daughter spermatogonia remain a source of new Spermatogonium cells.

(3) Stage of maturation

- After many mitotic divisions, The primary spermatocytes, divide by meiotic division as follows:
- I) 1st meiotic division (reduction division): each primary spermatocyte divide by meiotic division into two secondary spermatocytes {23 chromosome (one contains 22+X and one 22+Y)}.
- II) 2nd meiotic division (equational division): each of the developed secondary spermatocytes divide into two cells called spermatids (each contains 23 chromosomes 22+X or 22+Y).
 - N.B; Each daughter spermatogonium gives 4 spermatids (2= 22+X and 2= 22+Y).

(4) Stage of transformation (Spermiogenesis):

- It occurs in male only.
- Transformation of the spermatid into a mature sperm.
- The length of the sperm is about 50-60 micrometer
- 1. The nucleus forms the head of sperm.
- Jussel 2. The Golgi apparatus forms acrosomal cap contains hydrolytic enzymes which covers the anterior 1/2 of the head. اليوتيوب د. يوسف حسير

3. Centrioles,

a- Anterior centriole: in the neck, immediately behind the head.

- b- **Posterior** centricle: forms a **ring** shaped structure at end of the body.
- Axial filament arises from anterior centriole and passes through the ring shaped posterior centriole to the tail.
- Mitochondria forms a mitochondrial sheath around axial filaments between 4. centrioles.

5. Cytoplasmic membrane forms a cytoplasmic sheath around the body and tail.

• Characters of normal sperm

- 1. Number of sperm about 20-200 million per ml and survive on fructose.
- 2. Parts of mature sperm: head, neck, body and tail.
- 3. Motile of sperm at ejaculation: more than 80%.
- **4. Rate of movement of sperms** in the female genital tract about 1- 3 mm per minute.
- 5. Survival of sperm in the female genital tract about 3-4 days.
- 6. The average volume of semen at ejaculation is 3-5 ml
- 7. Appearance is whitish to gray
- 8. PH is 7.2 8.0 (If low is acidic while high is alkaline)

9. The seminal fluid is secreted by testis, seminal vesicle, prostate, and

، د_ يوسه

bulbourethral glands (Cooper's gland)

Abnormal spermatogenesis

- i) Azoospermia: absence of sperms in the seminal fluid
- ii) Oligospermia: decreased number of sperms in the seminal fluid
- iii) Asthenospermia reduced sperm motility
- iv) Necrospermia: sperms found dead.
- v) Genetic abnormalities: Sperm having abnormal chromosomal content
- vi) Morphological Abnormalities: If more than 20% affect fertility
 - Giant. Dwarf. Joined in head or in tail.

50

** Definition: It is a process by which mature ovum is formed from primitive germ cell (oogonium)

Oogenesis

OOGENESIS

dr_youssefhussein@yahoo.com

اليوتيوب د_ يوسف حسين

** Site: in the cortex of ovary in female.

**** Time:**

- It started during foetal (intrauterine) life 500
- Continues after puberty
- **Completed** after fertilization
- Arrested at the age of menopause.
- Many of the primary oocytes degenerate before birth
- At birth, the ovary contains about two million primary oocyte, most of them degenerate and, by puberty, when ovulation begins only about 300,000- 400,000 primary **oocytes** are left in the ovary.

**** Stages of Oogenisis**

A- During foetal life dr_youssefhussein@yahoo.com

اليوتيوب د يوسف حسين

(1) Stage of proliferation:

- Each primordial germ cell; {oogonium} (46 chromosome) is divided by mitosis into 2 daughter oogonia (each contains 46 chromosomes).
 (2) Stage of growth:
- Each of the daughter oogonia increases in size forming the primary oocyte containing 46 chromosomes (at birth).

B- After puberty

(3) Stage of maturation:

I) 1st meiotic division (reduction division): each primary oocyte divide by meiotic division into one secondary oocytes (contains 22 +X chromosomes and 1st polar body (contains 22 +X chromosomes and minimal amount of the cytoplasm).

C- After fertilization

II) 2nd meiotic division (equational division):

- The secondary oocyte divides into mature ovum (contains 23 chromosome, 22 + X and most of the cytoplasm) and 2nd polar body (contains 22 +X chromosomes and minimal amount of the cytoplasm) in the Fallopian tube.
- The 1st polar body divided by secondary meiotic division into two 2nd polar bodies.

اليوتيوب د_ يوسف حسيرً

N.B;

- The role of the polar body is to reduce the number of chromosomes. Later on decay and disintegrated

Differences between spermatogenesis and oogenesis

	Spermatogenesis	Oogenesis
Definition	Formation of the sperms from the	Formation of the ova from the primordial
	primordial germ cells.	germ cell.
Site	In the seminiferous tubules of testis	In the cortex of the ovary
Time	- It started at puberty and continues till	- It started during intrauterine life, and
	very old age (all over life).	continues after puberty to be completed
		after fertilization.
	اليوتيوب د. يوسف حسين	- It arrested at the age of menopause.
Hormones	- Follicle stimulating hormone,	- FSH and LH
	Luteinizing hormone, and testosterone	
Stages	Proliferation, growth, maturation and	Proliferation, growth, maturation (No
	transformation.	transformation stage)
Results	Each daughter spermatogonium gives	Each daughter oogonium gives 1 ova and 3
	4 sperms.	polar bodies.

