Biosynthesis of Heme

• Step 1 👢 👢

Is the synthesis of <u>Amino-levulinic acid</u>.

Condensation of glycine & succinyl-CoA <u>forming delta amino-levulinic acid (ALA)</u>

- Enzyme name Aminolevulinic acid synthase ALA synthase (Rate limiting step)
- Coenzyme → pyridoxal phosphate.
- Site Mitochondria

With loss of 1CO2 (Decarboxylation) And removal of Co A

$$CO_2 + CoA$$

$$CO_2 + CoA$$

$$Aminolevulinic acid synthase$$

$$H_2N \longrightarrow OH$$

$$CO_2 + CoA$$

$$H_2N \longrightarrow OH$$

$$CO_2 + CoA$$

Step 2

Formation of porpho-bilinogen PBG.

Moving out to the cytosol, 2 molecules of aminolevulinic acid condense to form PBG (a pyrrole), removing 2 molecules of water in the process (<u>Dehydration reaction</u>)

- Enzyme → PBG synthase (porphobilinogen synthase)/ ALA dehydratase
- Site → cytosol
- This step is affected by lead poisoning. (Aminolevulinic acid dehydratase is inhibited by lead.)

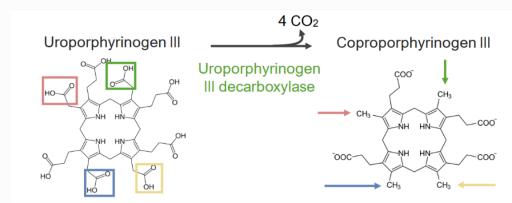
• Step 3

Is the formation of Hydroxy-methyl-bilane HMB (Linear molecule) .

- 4 molecules of porphobilinogen PBG condense to form HMB
 - Enzyme name Porphobilinogen deaminase / HMB synthase
 - Site → cytosol
 - Molecules are joined through elimination of an amino group.

Step 4

- Step 4 is the formation of uroporphyrinogen (UPG).
 - HMB (a linear compound) is converted to UPG III cyclic:
 - Enzyme: UPG III synthase.
 - Coenzyme: UPG III cosynthase
 - Site: cytosol
- Cyclization of the linear HMB to forms UPG III, the 1st cyclic intermediate of the pathway.


• Step 5

Synthesis of coproporphyrinogen (CPG) III.

Involves the decarboxylation of UPG III to CPG III with the elimination of 4 CO2 molecules.

All 4 acetyl side chains are decarboxylated to methyl groups.

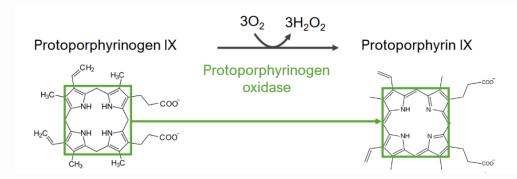
- Enzyme: uroporphyrinogen decarboxylase.
- Site: cytosol

• Step 6

Synthesis of protoporphyrinogen (PPG)

Oxidative decarboxylation converts 2 of 4 propionyl side chains to vinyl groups (catalyzed by Coproporphyrinogen oxidase)

- Molecular oxygen is required for this reaction.
- Enzyme: CPG oxidase (CPOX)
- Site: mitochondria

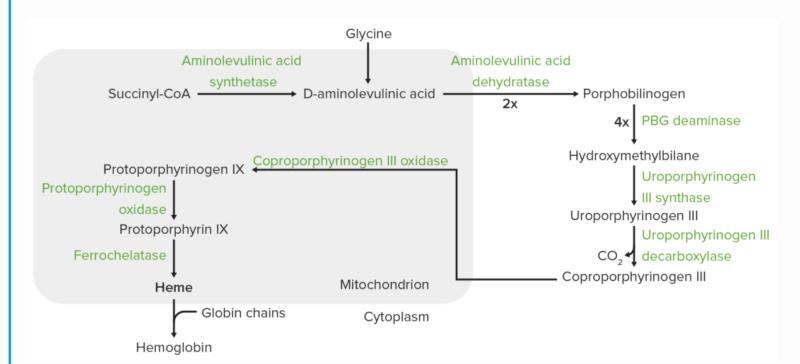

Coproporphyrinogen III
$$O_2$$
 2 H_2O + 2 CO_2 O_2 Protoporphyrinogen IX O_2 O_2 O_3 O_4 O_5 O_5

Step 7

Generation of protoporphyrin (PP).

PPG IX is converted to PP IX by oxidation.

- Oxidation adds double bonds
- Enzyme: PPG oxidase (PPOX)
- Site: mitochondria


Step 8

Step 8 is the generation of heme.

Fe++ is added to protoporphyrin IX (PP):

The ferrous ion is inserted in the middle of the porphyrin ring

- Enzyme: ferrochelatase (FECH)/heme synthase.
- A homodimeric enzyme containing 2 iron-sulfur clusters
- Site: mitochondria

