Anticoaquiants

Antithrombinactivators

·Enoxaparin Low-molecular-weight Heparin heparins (LMWHs) linzabarin

- · Heterogeneous mixture of branched glycosaminoglycans
- · Potentiates the inhibition of IIa, IXa, Xa, XIa, 2,9,10,11,12 XIIa by AT
- · Binds to AT through a unique pentasaccharide sequence leading to a conformational change
- · Given s.c. or i.v.
- · Binds to plasma proteins, endothelial cells & macrophages
- Elimination
- Depolymerisation in endothelial cells & macrophages (rapid, saturable)
- Renal (slow, non-saturable) and RES
- · Variable protein binding
- · Clearance varies with chain length
- · Therefore, anticoaquiant responsemonitored by activated partial thromboplastin time (APTT)
- · Target 1.5 2.5 times control

clinical uses

- Venous thrombosis ± embolism
- Acute coronary syndromes
- · Arterial thrombosis
- Extracorporeal devices (e.g. haemodialysis)

adverse effects

- Bleeding
- · Heparin-inducedthrombocytopenia(HIT) Immune-mediated
- Osteoporosis

· Derived from UFH by chemical or enzymatic depolymerization

Dalteparin

- · Molecular weight 2000 9000
- · About 15 monosaccharide units per molecule

Differences in Mechanism of action

- · Any size of heparin chain can inhibit the action of factor Xa by binding to antithrombin (AT)
- · In contrast, in order to inactivate thrombin (IIa), the heparin molecule must be long enough to bind both antithrombin and thrombin
- · Less than half of the chains of LMWH are long enough

factor Xa and IIa activity also bind factor Ha, therefore has decrease

Advantages ⇒ Low inhibition of platelet- function.

LMWH

Fondaparinux

Idraparinux

Lower incidence of thrombocytopenia & thrombosis

No need for laboratory monitoring in specific instances

Synthetic pentasaccharide analogues

80-90%

100%

100%

Higher bioavailabity ⇒ 90 % vs 30%

Longer $+1/2 \Rightarrow 4-6$ hrs us 0.5-1 hr renal (slower)

Bioavailability(s.c.) elimination

renal

renal

renal

half life (h)

4

17

80

Recombinanthirudins · Given i.v., s.c.

- · Elimination renal · Half life I-2 h

Bivalirudin

- · Given i.v. • Elimination renal &
- hepatic · Half life 25 min

Ximelagatran / Melagatran

· Promising oral direct thrombin inhibitor

Direct thrombin inhibitors

- · Converted to the active form melagatran
- No dosing problems
- No monitoring needed.
- · Recent atrial fibrillation study showed it to possibly be superior to warfarin.

Dabigatran

- · Given orally
- · Elimination renal
- · Half life 12 h
- · Substrate for P-glycoprotein in kidney, GIT

Direct Factor Xa inhibitors

[∆]Apixaban

- Direct Factor Xa inhibitor
- · Oral bioavailability 60%
- · Half life 12 h
- · Elimination hepatic > renal

Rivaroxaban

- · Direct Factor Xa inhibitor
- · Oral bioavailability 80%
- · Half life 7-11 h
- · Elimination renal > hepatic

Drugs that oppose action of Vitamin K

Warfarin

-Renal insufficiency creating >2 mg/dl -obese patients with altered drug pK - major bleeding risk factors

Warfarin Mechanism of Action

Reduces the post-translational carboxylation of glutamate residues of factors II, VII, IX, X

- · Anticoagulant effect seen after 2-3 days
- · Monitored by international normalized ratio (INR)
- · Well absorbed form GIT
- · Highly protein bound
- · Metabolised by CYP-450
- · Clearance is slow 36 hrs
- · Can cross placenta do not use during pregnancies

Inhibition of platelets

Drug interaction with Warfarin cont:

Promote clotting factor **Synthesis**

Reduced absorption

cholestyramine colestipol

Teràtogenicitu

Bleedina

Rashes

adverse effects · Plasma - Rapid but short-lasting

- VitaminK Alopecia
 - Not rapid, but lasts 1-2 weeks. Do not use if wishing to restart warfarin within next week.

Reversing action of warfarin

