

Prof. Khaled Abdel-Sater, MD

O₂ TRANSPORT BY BLOOD

Forms of O₂:

gases in chemical form have no pressure Tissues need (=250 ml/min)

ITMES	A- Physical Solution	B- Chemical combination
Nature	The molecules of O_2 are dissolved in plasma.	The molecules of O ₂ are in <u>combination</u> <u>with Hb</u>
Value	It about <u>3%</u>	It about <u>97%</u>
O2 supply to tissue	10 ml/min.	240 ml/min.
Importance Dr Khaled Abdel-Sater	It determines O ₂ pressure, so it determines the direction & rate of diffusion of gas in chemical combination from or to blood.	It is main O ₂ supply to the tissue.

Some Definitions

- 1- O_2 Content: is the volume of O_2 present in combination with Hb / 100 ml blood.
- **2-O2 Capacity:** is the maximum volume of O_2 present in combination with Hb when the Hb is fully saturation in 100 ml blood. Hb is 15 gm% & each 1 gm can carry 1.33 ml O_2 . O_2 capacity = 15 X 1.33 = 20 ml. (but only 97.5 % of Hb which carried O_2 , so it contain 19.5 ml).

3-02 Saturation=
$$\frac{O_2 \text{ content}}{O_2 \text{ capacity}} \times 100 = \frac{19.5}{20} = 97.5 \%$$

O2 Dissociation (Saturation) Curve

Def.,

It is the relationship between O₂ tension and O₂ saturation in the blood.

Physiological Significance of the Curve

- -The shape of the curve is S-shaped upper segment is horizontal and lower segment is vertical.
- <u>Upper segment is horizontal</u> these means that O₂ tension can be reduced to about 60 mmHg while the O₂ saturation is decreased to 90%, this means that Hb can be still saturated even at lower O₂ tension as <u>at high altitudes and in excessive lung diseases</u>.(horizontal= high tension= high affinity)
- Lower segment is vertical this means that slight decrease in O_2 tension is accompanied by marked decrease in O_2 saturation. (lower segment = low tension = low affinity)

OxyHemoglobin Dissociation Curve

N.B:

P50 refers to partial pressure of O_2 at 50% saturation of Hb with O_2 . An index of the position of the Hb- O_2 dissociation curve is given by the P_{50} (average), the PO_2 (25 mmHg).

Dr Khaled Abdel-Sater

Factors that Shift the Curve

Shift to Right	Shift to Left
- 1 levels of CO ₂ (as in muscular exercise).	- $\downarrow \downarrow$ levels of CO_2 (as in during sleep).
-↑↑ H+ (as in diabetes mellitus).	-↓↓ H ⁺ (as in high altitude).
- \(\backsquare\) \(2,3\)-diphosphoglycerate (2,3-DPG) (as in exercise).	- $\downarrow \downarrow 2,3$ -diphosphoglycerate (as in acidosis and stored blood).
Because CO ₂ , H ⁺ and 2,3-DPG	
combined with Hb so decrease	
affinity of Hb to O ₂	
-↑↑ temperature (as in fever).	-↓↓ temperature (as in hypothermia and
	during sleep).
- ↑↑ Hb concentration (as in polycythemia).	- ↓↓ Hb concentration (as in anemia)
##All these factors are present in the active	##All these factors are present in the inactive
<u>tissue</u>	<u>tissue</u>
Shift to right means that the affinity of Hb to	Shift to left means that the affinity of Hb to
O_2 is decreased. So it give O_2 easily to tissues	O_2 is increased. So <u>Left</u> shift: causes <u>Loading</u>
(more O_2 supply). R ight: causes R elease of	of O2 in <u>L</u> ungs.
O2.	

Significance of the Shift

1-The Boher's Effect:

- <u>**Def.**</u>, Increase of CO_2 (or H^+) leads to decrease affinity of Hb to O_2 so it give its O_2 easily to tissues and visa versa.
- <u>Importance:</u> As blood pass through the lung, CO_2 diffuse from blood to alveoli this decrease the CO_2 level and increase O_2 loading to Hb.
- -Then blood reach tissues, the CO_2 diffuse from tissues to blood this increase the CO_2 level and increase O_2 removal from Hb more O_2 free and more O_2 supply to tissues.
- **2- The Exercise:** With muscular exercise, there are CO_2 , H^+ , 2,3-DPG & temperature these lead to increase O_2 removal from Hb, more O_2 free and more O_2 supply to tissues.

