Prof. Khaled Abdel-Sater, MD # O₂ TRANSPORT BY BLOOD Forms of O₂: gases in chemical form have no pressure Tissues need (=250 ml/min) | ITMES | A- Physical Solution | B- Chemical combination | |-----------------------------------|--|--| | Nature | The molecules of O_2 are dissolved in plasma. | The molecules of O ₂ are in <u>combination</u> <u>with Hb</u> | | Value | It about <u>3%</u> | It about <u>97%</u> | | O2 supply to tissue | 10 ml/min. | 240 ml/min. | | Importance Dr Khaled Abdel-Sater | It determines O ₂ pressure, so it determines the direction & rate of diffusion of gas in chemical combination from or to blood. | It is main O ₂ supply to the tissue. | # **Some Definitions** - 1- O_2 Content: is the volume of O_2 present in combination with Hb / 100 ml blood. - **2-O2 Capacity:** is the maximum volume of O_2 present in combination with Hb when the Hb is fully saturation in 100 ml blood. Hb is 15 gm% & each 1 gm can carry 1.33 ml O_2 . O_2 capacity = 15 X 1.33 = 20 ml. (but only 97.5 % of Hb which carried O_2 , so it contain 19.5 ml). 3-02 Saturation= $$\frac{O_2 \text{ content}}{O_2 \text{ capacity}} \times 100 = \frac{19.5}{20} = 97.5 \%$$ ### **O2 Dissociation (Saturation) Curve** Def., It is the relationship between O₂ tension and O₂ saturation in the blood. ### Physiological Significance of the Curve - -The shape of the curve is S-shaped upper segment is horizontal and lower segment is vertical. - <u>Upper segment is horizontal</u> these means that O₂ tension can be reduced to about 60 mmHg while the O₂ saturation is decreased to 90%, this means that Hb can be still saturated even at lower O₂ tension as <u>at high altitudes and in excessive lung diseases</u>.(horizontal= high tension= high affinity) - Lower segment is vertical this means that slight decrease in O_2 tension is accompanied by marked decrease in O_2 saturation. (lower segment = low tension = low affinity) #### OxyHemoglobin Dissociation Curve # **N.B**: **P50** refers to partial pressure of O_2 at 50% saturation of Hb with O_2 . An index of the position of the Hb- O_2 dissociation curve is given by the P_{50} (average), the PO_2 (25 mmHg). Dr Khaled Abdel-Sater ## Factors that Shift the Curve | Shift to Right | Shift to Left | |---|--| | - 1 levels of CO ₂ (as in muscular exercise). | - $\downarrow \downarrow$ levels of CO_2 (as in during sleep). | | -↑↑ H+ (as in diabetes mellitus). | -↓↓ H ⁺ (as in high altitude). | | - \(\backsquare\) \(2,3\)-diphosphoglycerate (2,3-DPG) (as in exercise). | - $\downarrow \downarrow 2,3$ -diphosphoglycerate (as in acidosis and stored blood). | | Because CO ₂ , H ⁺ and 2,3-DPG | | | combined with Hb so decrease | | | affinity of Hb to O ₂ | | | -↑↑ temperature (as in fever). | -↓↓ temperature (as in hypothermia and | | | during sleep). | | - ↑↑ Hb concentration (as in polycythemia). | - ↓↓ Hb concentration (as in anemia) | | ##All these factors are present in the active | ##All these factors are present in the inactive | | <u>tissue</u> | <u>tissue</u> | | Shift to right means that the affinity of Hb to | Shift to left means that the affinity of Hb to | | O_2 is decreased. So it give O_2 easily to tissues | O_2 is increased. So <u>Left</u> shift: causes <u>Loading</u> | | (more O_2 supply). R ight: causes R elease of | of O2 in <u>L</u> ungs. | | O2. | | ## Significance of the Shift ### 1-The Boher's Effect: - <u>**Def.**</u>, Increase of CO_2 (or H^+) leads to decrease affinity of Hb to O_2 so it give its O_2 easily to tissues and visa versa. - <u>Importance:</u> As blood pass through the lung, CO_2 diffuse from blood to alveoli this decrease the CO_2 level and increase O_2 loading to Hb. - -Then blood reach tissues, the CO_2 diffuse from tissues to blood this increase the CO_2 level and increase O_2 removal from Hb more O_2 free and more O_2 supply to tissues. - **2- The Exercise:** With muscular exercise, there are CO_2 , H^+ , 2,3-DPG & temperature these lead to increase O_2 removal from Hb, more O_2 free and more O_2 supply to tissues.