Cell Injury and Necrosis-3 Apoptosis

Ghadeer Hayel, M.D. Assistant Professor of Pathology Consultant Hematopathologist 10/13/2024

Apoptosis

- + Apoptosis suicide programmed cell death- regulated cell death.
- + is a pathway of cell death in which cells activate enzymes that degrade the cells' own nuclear DNA and nuclear and cytoplasmic proteins.
- + Apoptosis = "falling off" Greek
- + Can be pathologic and physiologic+ **Doesn't elicit** inflammation.

Apoptosis does not elicit inflammation:

- + The plasma membrane remains intact.
- + Apoptotic bodies are formed, contain portions of the cytoplasm and nucleus and become targets for phagocytosis before their contents leak out.

Physiologic Apoptosis:

Condition	Mechanism of Apoptosis
During embryogenesis	Loss of growth factor signaling(presumed mechanism)
Turnover of proliferative tissues (e.g., intestinal epithelium, lymphocytes in bone marrow, and thymus)	Loss of growth factor signaling(presumed mechanism)
Involution of hormonedependent tissues (e.g., endometrium)	Decreased hormone levels leadto reduced survival signals
Decline of leukocyte numbers at the end of immune and inflammatory responses	Loss of survival signals as stimulus for leukocyte activation is eliminated
Elimination of potentially harmful self-reactive lymphocytes	Strong recognition of self antigens induces apoptosis by both the mitochondrial and death receptor pathways

During embryogenesis (implantation, organogenesis, developmental involution, separation of digits in limb development)

in adult multicellular organisms cell death is a regular occurrence. In humans EACH HOUR!!

Developing mouse paw,

a. Embryonic day12.5

b. Embryonic day13.5

Pathologic Apoptosis:

Condition	Mechanism of Apoptosis
DNA damage	Activation of proapoptotic proteins by BH3-only sensors
Accumulation of misfolded proteins	Activation of proapoptotic proteins by BH3-only sensors, possibly direct activation of caspases
Infections, especially certain viral infections	Activation of the mitochondrial pathway by viral proteins Killing of infected cells by cytotoxic T lymphocytes, which activate caspases.

Mechanisms of Apoptosis

Normally, there is a biochemical pathways that control the balance of death- and survival-inducing signals..

- ✤ Apoptosis is regulated by these pathways → Activation of enzymes called caspases through two main pathways:
- 1- Mitochondrial pathway (intrinsic)
- 2- Death receptor pathway (extrinsic)

Intrinsic pathway; mitochondrial pathway

- + In most physiologic & pathologic situations.
- + Mitochondria contain several proteins capable of inducing apoptosis → Cytochrome c.
- + ↑ mitochondrial permeability → permeable membrane
 → cytochrome c leaks → triggering caspase 9 →
 activate apoptosis

Intrinsic pathway; mitochondrial pathway

A family of more than 20 proteins (prototype is BcI-2) controls the permeability of mitochondria.

+ **proapoptotic** members of the family are **Bax & Bak**.

+ Activated by BH3 proteins (sensor)

+ when stimulated→dimerize
→insert into mitochondrial
membrane → form channels
→cytochrome c escapes into
cytosol

+ Antiapoptotic members are BCL-2 & BCL-xL

+ produced in response to growth factors & survival signals.

+ maintain the **integrity of mitochondrial membranes** → holding proapoptotic in check.

Intrinsic pathway; mitochondrial pathway

- BH3 protein : a group of sensors (called BH3 proteins because they contain the third domain seen in Bcl-family)
- Activated when:
- 1. Cells are deprived of growth factors & survival signals.
- 2. Cells are exposed to agents that damage DNA.
- 3. Cells accumulate unacceptable amounts of misfolded proteins.
- They shift the life-sustaining balance in favor of proapoptotic Bak and Bax.

Extrinsic pathway; death receptor pathway

+ Tumor necrosis factor (TNF) receptor family.

+ The prototypic death receptors are the **type I TNF** receptor & **Fas (CD95)**.

+ contain a cytoplasmic regions → "**death domain**"

+ Fas ligand (FasL) : membrane protein expressed on activated T lymphocytes. + **T cells** recognize fas expressing target , fas molecules are **cross linked** by **fasL** to activate **caspase 8**

In Either pathway:

- After caspase-9 or caspase-8 is activated → it cleaves & thereby activates additional caspases → that cleave numerous targets → activate enzymes that degrade the cells' proteins & nucleus.
 - The end result is the characteristic cellular fragmentation of apoptosis.

Clearance of apoptotic cells.

- ✓ entice phagocytes by producing a number of "eat-me" <u>signals:</u>
- + "flips" phospholipid to the outer leaflet, expose phosphatidylserine.
 + secrete soluble factors that recruit phagocytes.
- Happens before the cells undergo membrane damage and release their contents... So no inflammation!

Morphology:

- Involves single cells or small clusters
- Cells shrink rapidly, retain intact
 plasma membrane
- Formation of cytoplasmic buds
- Fragmentation into apoptotic
 bodies
- Apoptotic bodies phagocytized rapidly before inflammatory response.

Necrosis Vs Aboptosis Vs

Feature	Necrosis	Apoptosis
Cell size	Enlarged (swelling)	Reduced (shrinkage)
Nucleus	Pyknosis → karyorrhexis → karyolysis	Fragmentation into nucleosome-sized fragments
Plasma membrane	Disrupted	Intact; altered structure, especially orientation of lipids
Cellular contents	Enzymatic digestion; may leak out of cell	Intact; may be released in apoptotic bodies
Adjacent inflammation	Frequent	No
Physiologic or pathologic role	Invariably pathologic (culmination of irreversible cell injury)	Often physiologic means of eliminating unwanted cells; may be pathologic after some forms of cell injury, especially DNA and protein damage

Other Pathways of Cell Death:

Necroptosis

- Features of **both** necrosis and apoptosis.
- initiated by engagement of TNF receptors → receptor interacting protein (RIP) kinases are activated→ initiating dissolution of the cell like necrosis

Pyroptosis

- activation of a cytosolic dangersensing protein complex called the **inflammasome.**
- Greek, *pyro* = fire
- Used by infectious microbes
- Fever + inflammation + apoptosis

Autophagy

- ("self-eating")
 - refers to lysosomal digestion of the cell's own components.
 - Nutrient deprivation

.

Survival pathway

Any questions?

APOPTOSIS cellular harakiri