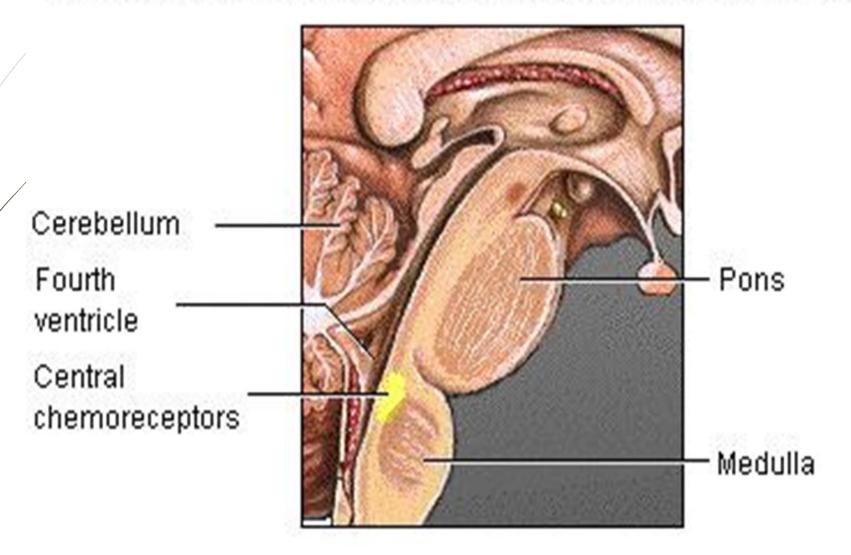
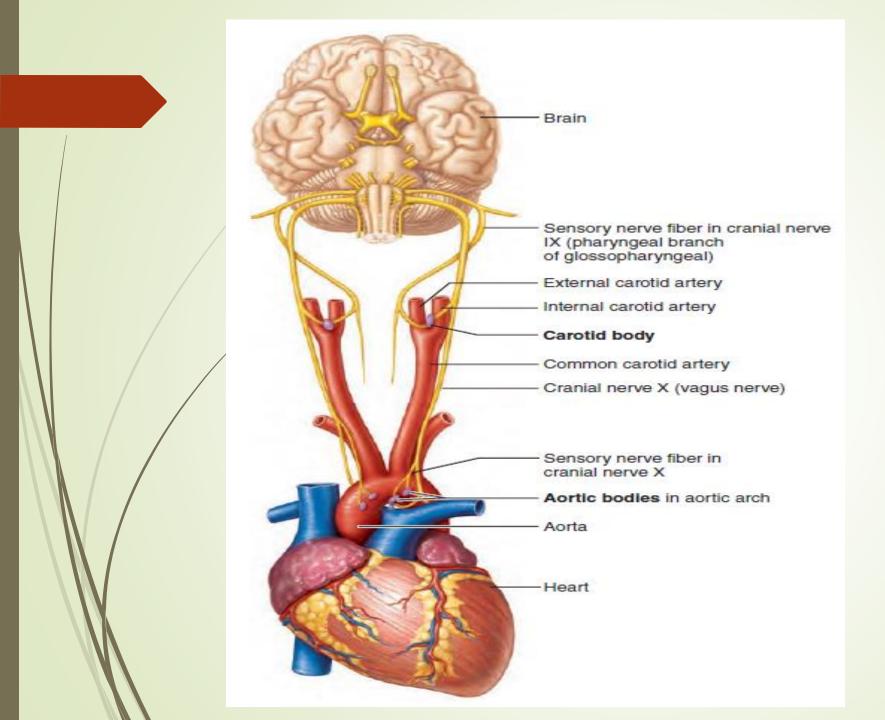
Regulation of Respiration 8- Chemical & Non-Chemical Control Of Respiration

By

Dr. Nour A. Mohammed Associate professor of physiology Faculty of medicine, Mutah University 2024-2025

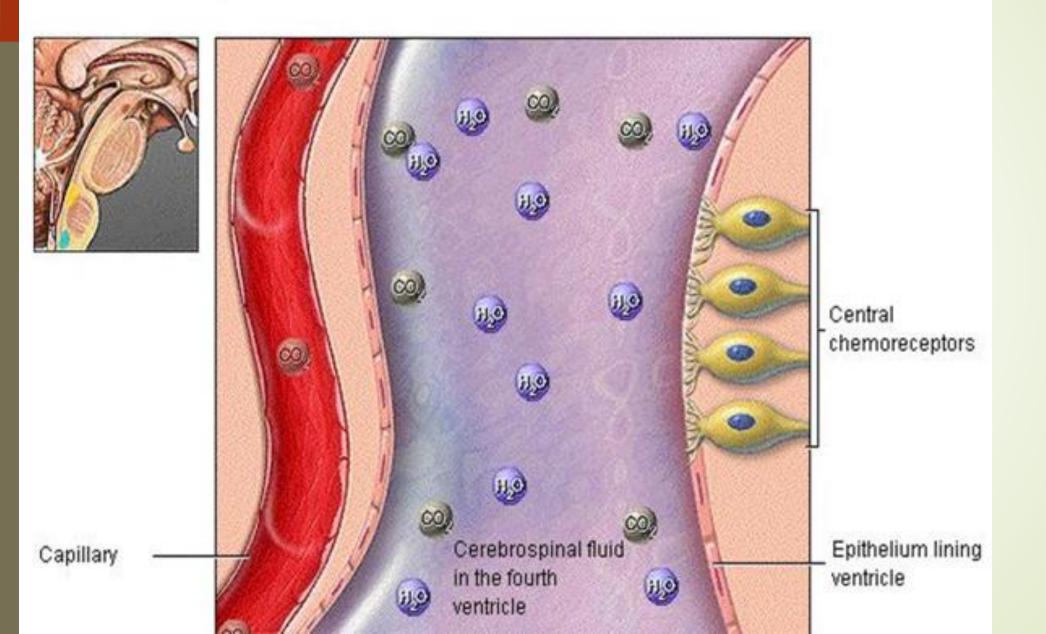

[B] Chemical regulation of respiration


-Respiration is stimulated by: \uparrow Co2 tension , \checkmark O2 tension and \uparrow H+ ion concentration in the arterial blood.

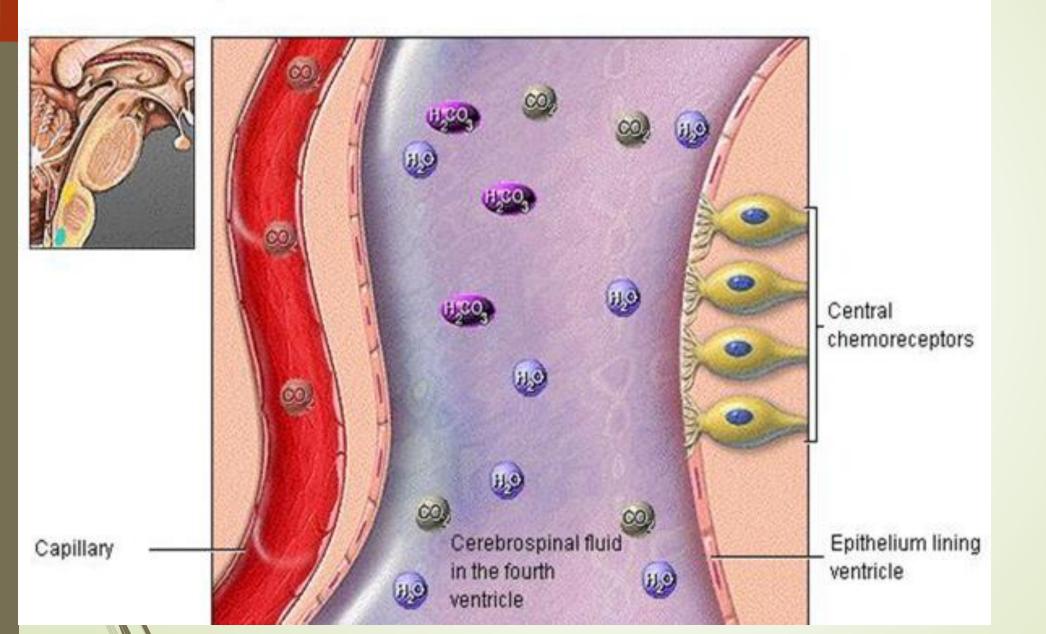
- These changes are associated with increase the metabolic activity

-This effect occurs via the peripheral and central receptors.

The central chemoreceptors in the medulla monitor the pH associated with CO_2 levels in the CSF in the fourth ventricle. The chemoreceptors synapse directly with the respiratory centers

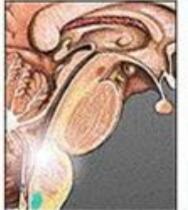


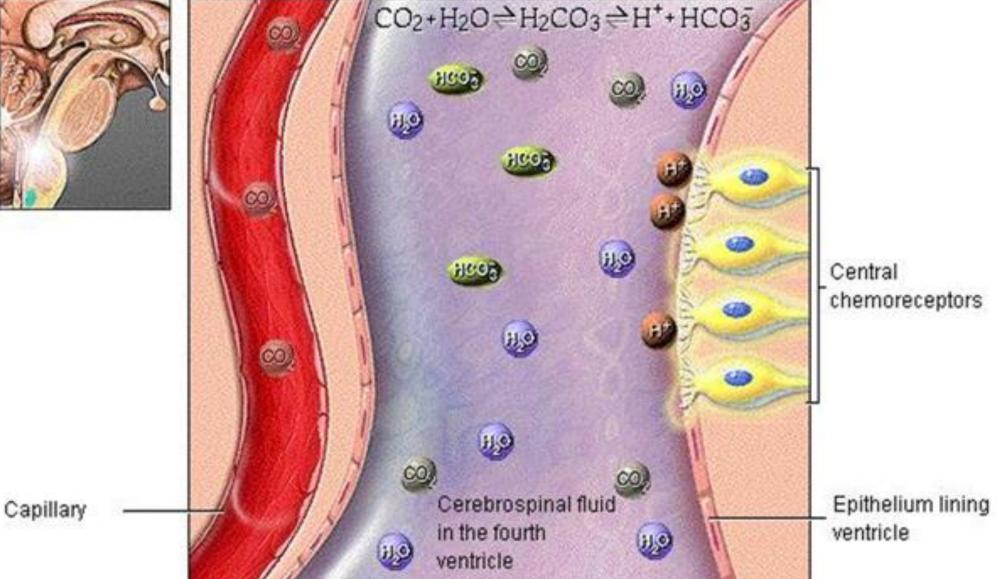
Location & innervation of the peripheral chemoreceptors in the carotid and aortic bodies


	Peripheral chemoreceptors	Central chemoreceptors
Site	 Aortic body: in the aortic arch. Carotid body: at bifurcation of common carotid artery. 	 Bilaterally in medulla Near to respiratory center. <u>But</u>, separate from it.
Afferent	 Aortic body via: Vagus nerve. (X) Carotid body via: glossopharyngeal(IX) BOTH are called: the <u>buffer nerves</u>. 	 Direct contact with (CSF) <u>But</u>, separated from the blood by the blood brain barrier (BBB).
Stimulus	 Hypoxia (♣ O₂ tension to 60mmHg) the <u>main</u> stimulus. So, they are called O₂ lack receptors. Hypercapnia (௺ CO₂ tension) with less effect (30% of effect). Acidosis (௺ H⁺ concentration). ⑦ K⁺ & ⑦ Nicotine. These conditions occur by: Hypotension & Hyperactive tissue Hemorrhage & at High altitude. The blood flow to these receptors is very high = 2000ml/100 gm tissue. So, these receptors depend only on the dissolved O₂ and stimulated by very low PO₂. Not stimulated by ♣Oxyhemoglobin content as in anemia or CO poisoning. 	 These receptors are <u>ONLY</u> stimulated by <u>îr PCO2</u> in <u>arterial</u> blood. CO2 penetrate the BBB because CO2 is lipid soluble. <u>In CSF</u>: By carbonic anhydrase enzyme: CO2 + H2O ⇔ H2CO3 H2CO3 ⇔ H⁺ + HCO3. H⁺ in CSF stimulates the chemoreceptors which in turn stimulate the respiratory center. H⁺ is not buffered by CSF as it has low protein content. îr H⁺ in arterial blood <u>not</u> stimulate
	 content as in anemia or CO poisoning. Histotoxic hypoxia (♣ O₂ utilization of tissue) is more powerful stimulant. 	these receptors as H ⁺ not penetrate the blood brain barrier.

. . . .

CENTRAL CHEMORECEPTORS: EFFECT OF PCO2




CENTRAL CHEMORECEPTORS: EFFECT OF PCO2

CENTRAL CHEMORECEPTORS: EFFECT OF PCO2

The hydrogen ions stimulate the central chemoreceptors, which send nerve impulses to the respiratory centers in the medulla.

Ventilatory response to O2 lack

O2 lack is a weaker stimulus for the respiration than the Co2 excess, and act only via the peripheral receptors

This weak stimulatory effect (2-4 folds only) is due to:

1- Decrease O2 \Rightarrow more reduced hemoglobin, which is weak acid and buffer H+ leading to inhibition of respiration.

2- Decrease O2 \Rightarrow slight stimulation of respiration \Rightarrow wash of Co2 and H+ \Rightarrow decrease Co2/ \Rightarrow strong inhibitory effect on respiration which oppose the stimulatory effect of decrease O2 leading to inhibition of respiration.

But the O2 lack effect increased in cases of:

1- Overdose of Anesthesia as it depresses the **central chemoreceptors** with no response to Co2 and respiration in these cases is maintained only by **O2 lack**, So, **100% O2** during anesthesia \Rightarrow inhibit respiration and may be fatal

Effect of CO2 excess

CO ₂ excess	Effect
	2 folds increase in respiration
ightarrow ♀ ♀ PCO ₂ in arterial blood.	To get rid of this excess CO ₂ .
	10 folds increase in respiration
\Rightarrow $\hat{1}$ PCO ₂ in arterial blood to 50mmHg	To get rid of this excess CO ₂ .
	CO ₂ narcosis:
	Inhibition of respiratory center ⇒ more
	accumulation of CO ₂ (hypercapnea) & headache
	& coma & death from CO ₂ narcosis.

Carbogen: Mixture of 5% CO2 + O2 is used to stimulate respiration.

Ventilatory response to CO2 excess

Ventilatory response to H+

Increased H⁺ caused by

1)*Respiratory acidosis* in which hypoventilation which isn't secondary to fall in H⁺ concentration \rightarrow accumulation of Co₂ & H⁺ \rightarrow acidemia (\downarrow pH less 7.4)

2) *Metabolic acidosis* as in diabetes mellitus with ketoacidosis \rightarrow acidemia. This led to hyperventilation (rapid and deep **kussmoul** respiration) via stimulation of the peripheral receptor. **C** – Non-chemical regulation

1. Afferents from the respiratory system

A. From the lung

	Lung stretch receptor (Herring Breuer inflation reflex)	Lung irritant receptors	J-receptors (Pulmonary chemoreflex)
Receptors	Stretch receptors in the bronchi.	Bronchi & Bronchioles.	Close to alveoli (Juxta capillary)
Stimulus	Overinflation By 1500 ml.	Irritants as: Cigarette.	Pulmonary <u>E</u> dema & <u>E</u> mboli.
Afferent	Vagus.	Vagus.	Vagus.
Response	 a) Inhibit DRG & inhibit apneustic center. b) Bronchodilatation. 	a) Cough. b) Bronchoconstriction.	a) Apnea. b) Hypotension. c) Bradycardia.

B. From the upper respiratory passages

	Sneezing	Cough	Swallowing
Stimulus	Irritation of nose.	Irritation of bronchi.	Irritation of pharynx.
Afferent	Trigeminal. (V)	Vagus. (X)	Glossopharyngeal. (IX)
Response	Deep inspiration Followed by forced expiration Against opened glottis.	Deep inspiration Followed by forced expiration Against closed glottis with sudden opening.	Swallowing apnea (stoppage of respiration) and closure of glottis.

2. Afferent from the cardiovascular system

	Arterial baroreceptors	Atrial baroreceptors
Stimulus	û ABP & û pulse pressure.	û VR.
Afferent	Vagus & glossopharyngeal.	Vagus.
Response	Inhibit respiration.	Stimulate respiration.

- Stimulate arterial baroreceptors ⇒ reflex apnea

3. Afferents from higher centers

- A. Limbic cortex & Hypothalamus:
- Mild pain & emotions: \Rightarrow tachypnea via sympathetic
- Severe pain & emotions: ⇒ inhibition of respiration
- Hot as fever: \Rightarrow stimulation of respiratory center
- Panting: shallow rapid breathing in dogs (no sweat glands) ⇒ heat loss
- B. Cerebral cortex: (Voluntary control)

I. Voluntary apnea (breath holding)

- Temporary stoppage of breathing till the breaking point.
- Voluntary apnea ⇔ 爺CO2 & 爺H+ & ݨO2 ⇔ stimulate respiration
- Breaking point is delayed by:
- a) Previous hyperventilation \Rightarrow \bigcirc CO2
- b) Breathing 100% O2 before apnea ⇔ û O2
- c) Holding the breath in full inspiration ⇒ inhibition of respiration
- d) Swallowing (deglutition) ⇒ inhibition of respiration

Types of apnea

1)Voluntary apnea may occur during speech, blowing, suckling, childbirth, micturition and defecation

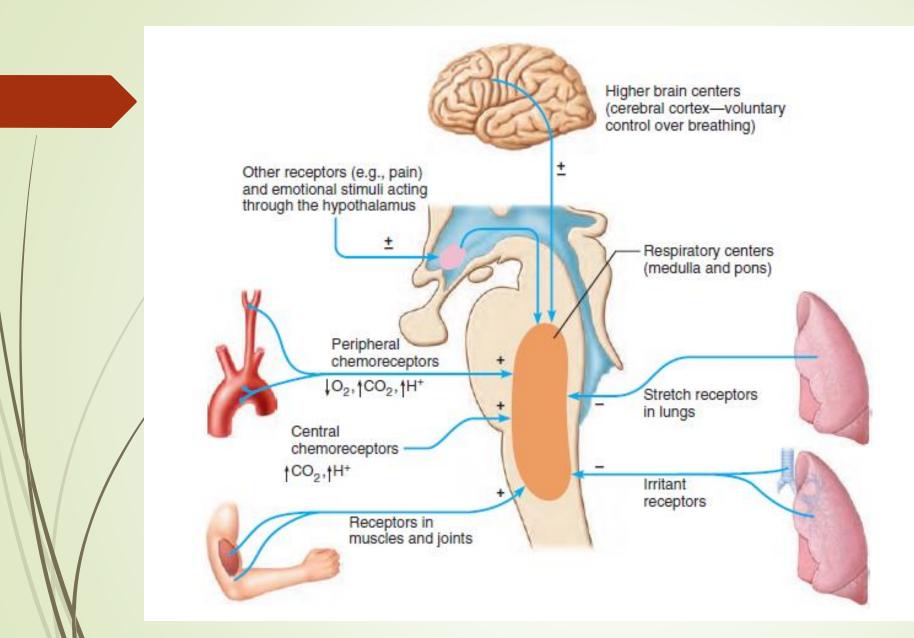
- 2) Apnea follows the voluntary hyperventilation
- 3) Adrenaline apnea
- 4) Swallowing apnea
- 5) Chyne-stokes respiration

I/I. Voluntary hyperventilation

Increase in depth and rate of respiration $\rightarrow \downarrow PCo_2$ from 40 to 15 mmHg (hypocapnia), $\uparrow PO_2$ from 95 to 130 mmHg and $\downarrow H^+$ (alkalosis) \rightarrow inhibition of respiration \rightarrow apnea $\rightarrow \downarrow O_2 \& \uparrow Co_2 \rightarrow$ stimulate respiration \rightarrow hyperventilation and the cycle is repeated, then PCo₂ return to normal level and breathing becomes normal. This alternate hyperventilation and apnea is called (**periodic breathing**) or (chyne-stokes respiration)

Causes of chyne-stokes respiration (Periodic respiration)

- 1. After voluntary Hyperventilation.
- 2. High altitude (hypoxia).
- Heart failure ⇒ prolongation of lung-brain circulation, so changes in arterial gas tension at lung takes longer time to affect the brain center.
- 4. Live failure & kidney failure ⇒ inhibition of DRG by toxic substances.
- 5. Narcotics & morphine $\Rightarrow \hat{T}$ sensitivity of chemoreceptors to CO₂.


4- Afferents from skeletal muscles, joints and skin

(a) From muscle spindle of the intercostal muscle and the diaphragm to regulate the depth of respiration.

(b) From the proprioceptors: During muscle movements, afferent from tendons, ligaments and joints to stimulate the respiratory center \rightarrow Exercise hyperventilation. (c) From the skin: Exposure to cold leading to initial apnea followed by deep inspiration 5) Respiratory components of the other visceral reflexes

A. Swallowing and vomiting: Apnea to prevent aspiration of food of vomitus

- B. Hiccup: Sudden contraction of diaphragm ⇒ sudden inspiration with sudden closure of the glottis → producing characteristic sound
- It occurs due to irritation of diaphragm or upper abdominal viscera
- It is treated by inhalation of CO2 gas mixture or tranquilizer drugs
- C. Yawning: is infectious respiratory act characterized by deep inspiration to:
- a) Open alveoli to prevent collapse
 - b) 个 venous return

Neural and chemical influences on brain stem respiratory centers

