Arterial Blood Gas Interpretation

 \circ

Assistant Professor Dr. Maha Alsadik

➢ABG Sampling

➢Interpretation ofABG **• Oxygenation status** ■ Acid Base status

➢Case Scenarios

✓Only small 0.5ml Heparin for flushing and discard it \sqrt{s} Syringes must have $> 50\%$ blood. Use only 2ml or less syringe

.

Sites for obtaining ABG

- **Radial artery (most common)**
- **Brachial artery**
- **Femoral artery**
- **Radial is the most preferable site used because:**
- **It is easy to access**
- **It is not a deep artery which facilitate palpation, stabilization and puncturing**
- **The artery has a collateral blood circulation**

ALLEN'S TEST

It is a test done to determine that collateral circulation is present from the ulnar artery

➢ Ensure No Air Bubbles. Syringe must be sealed immediately after withdrawing sample.

◦ **Contact withAIR BUBBLES**

Air bubble $=$ PO₂ 150 mm Hg, PCO₂ 0 mm Hg Air Bubble + Blood = $\bigcap PQ_2$ PCO₂

➢ ABG Syringe must be transported at the earliest to the laboratory for **EARLY** analysis via **COLD CHAIN**

Interpretation ofABG ❑ **OXYGENATION** ❑ **ACID BASE**

Blood Gas Report

- **Oxygenation Information** \cdot PaO₂ [oxygen tension] •SaO₂ [oxygen saturation]
- •**Acid-Base Information**
- •PH
- \cdot PaCO₂
- •HCO₃ [measured]

➢**Determination of PaO²** PaO2 is dependant upon \longrightarrow Age, FiO2, Patm

As $Age \rightarrow$ the expected $\overline{PaO_2}$

• PaO₂ = 109 - 0.4 (Age)

N As **FiO²** the expected **PaO²**

- Alveolar Gas Equation:
	- $P_{A}O_{2} = (P_{B}-P_{H_2O})$ x FiO_2 $PaCO_2/R$

PAO 2 = partial pressure of oxygen in Alveolar gas, P_B = Barometric Pressure (760mmHg), $P_{\text{H}_2\text{O}} =$ water vapor pressure (47 mm Hg), $F_{\text{O}} =$ fraction of inspired oxygen, \mathbf{R} = respiratory quotient (0.8)

➢**Determination of the PaO2 / FiO2 ratio**

Inspired Air $FiO_2 = 21\%$ **PiO² = 150 mmHg**

PaO2/ FiO² ratio

➢Gives understanding Patient Oxygenation with Respect to Oxygen delivered, more important than simply the PaO² value.

Example,

HYPOXIA VERSUS **HYPOXEMIA**

Hypoxia is defined as a reduction of oxygen supply at the tissue level, which is not measured directly by a laboratory value

Patients may not indicate signs of hypoxemia

Hypoxemia is defined as a condition where arterial oxygen tension or partial pressure of oxygen $(PaO2)$ is measured to be between 80 and 100 mmHg

Patients will also experience hypoxia

 $\mathbb P$ ediaa.com

CLASSIFICATION OF HYPOXEMIA

This classification is based on predicted *normal values for a patient who is less* than 60 years old and breathing room air. For older patients, subtract 1 mm Hg for every year over 60 years of age from the limits of mild and moderate hypoxemia.

A PaO2 of less than 40 mm Hg represents severe hypoxemia at any age.

Causes of hypoxemia 1) Reduced partical pressure of oxygen in the inspired air

2) Alveolar hypoventilation

3) Ventilationperfusion mismatch

> 4) Shunt (intracardiac or intrapulmonary)

5) Impaired alveolarcappilary diffusion

Shunt is perfusion of poorly ventilated alveoli. Physiologic dead space is ventilation of poor perfused alveoli.

VQ mismatch

Capillary

Shunt Physiology

The A-a gradient

A-a gradient = $P_AO2 - P_aO2$

Normal $=$ < 15mmHg Normal rises 1mmHg per decade

Acid Base Balance

- $\triangleright H^+$ ion concentration in the body is precisely regulated
- \triangleright The body understands the importance of H⁺ and hence devised DEFENCES against any change in its concentration-

BICARBONATE BUFFER SYSTEM Acts in few seconds

A

C

I

D

B

A

S

E

RESPIRATORY REGULATION Acts in few minutes

RENAL REGULATION Acts in hours to days

Assessment of ACID BASE Balance

• Definitions and Terminology

❑**ACIDOSIS** – presence of a process which tends to pH by virtue of gain of H^+ or loss of $HCO3$ ⁻ ❑**ALKALOSIS** – presence of a process which tends to \uparrow pH by virtue of loss of H⁺ or gain of HCO₃⁻

If these changes, change pH, suffix 'emia'is added ● **ACIDEMIA** – reduction in arterial pH (pH<7.35) ⚫ **ALKALEMIA** – increase in arterial pH (pH>7.45)

Causes of Acid-Base Balance

Compensatory responses and their mechanisms.

If PCO2 & [HCO3] move in opposite directions

Normal Values

StepWise Approach to Interpretation of ABG Reports

Step 1 Acidosis, Alkalosis, or normal?

\Box PH is < 7.35, \Rightarrow Primary process is acidosis. \Box PH is > 7.45, \Rightarrow Primary process is alkalosis.

Step 2: Is the primary disturbance Respiratory or Metabolic?

Look at the paCO2 and pH

- If both go with the same direction the primary disturbance is ⇛ Metabolic
	- If both go with different direction the primary disturbance is \Rightarrow Respiratory

Step 3: For Primary Respiratory disturbance, is it acute or chronic? then Compansation

Acute or chronic

PaCO2 and pH

Acute condition.

for each 1mm Hg PaCO2 \Rightarrow pH changes 0.008. pH changes $(\Delta pH) = 0.008 \times \Delta PaCO2$

Chronic condition.

for each 1mm Hg PaCO2 \Rightarrow pH changes 0.003 **pH** changes $(\Delta \text{ pH}) = 0.003 \times \Delta \text{PaCO2}$

IF RESPIRATORY, IS IT ACUTE OR CHRONIC? Acute respiratory disorder - Δ pH_(e-acute) = 0.008x Δ Pco₂ > Chronic respiratory disorder - $\Delta pH_{(e-chronic)} = 0.003x \Delta pCO_2$

>Compare, $pH_{measured}(pH_m)$ v/s $pH_{expected}(pH_e)$

Step 3: For Primary Respiratory disturbance, is it acute or chronic? then Compansation

Compansation

PaCO2 and HCO3

Respiratory acidosis:

➢ Acute condition.

for each 10mm Hg PaCO2 $\uparrow \Rightarrow$ HCO3 \uparrow by 1 meg.

➢ Chronic condition.

for each 10mm Hg PaCO2 ↑⇒ HCO3 ↑by 4 meq

Respiratory alkalosis:

 \triangleright Acute condition.

for each 10mm Hg PaCO2 $\downarrow \Rightarrow$ HCO3 \downarrow by2 meq.

- \triangleright Chronic condition.
- for each 10mm Hg PaCO2 $\downarrow \Rightarrow$ HCO3 \downarrow by5 meq.

a. Respiratory acidosis

33 **PH return to normal PaCO2 & HCO3 levels are still high to correct acidosis**

B. Respiratory alkalosis

34 **PH return to normal PaCO2 & HCO3 levels are still low to correct alkalosis**

Step4: For a metabolic disturbance, is the respiratory system compensating OK?

Metabolic acidosis Expected PCO2 = $(1.5 \times$ HCO3- $) + 8 \pm 2$ Winter's Equation

Metabolic alkalosis

Expected PCO2 = $40 + (0.6 \text{ X } \Delta$ HCO3-)

Quick rule of thumb: $PCO₂$ = last 2 digits of pH

For any metabolic disorder

Step4: For a metabolic acidosis, Anion gap?

Electrochemical Balance in Blood

CAUSES OF METABOLIC ACIDOSIS (High anion $gap) \rightarrow (Normochloremic)$

☆LACTIC ACIDOSIS ☆KETOACIDOSIS \checkmark Diabetic \checkmark Alcoholic \checkmark Starvation *☆ RENAL FAILURE* (acute and chronic)

☆TOXINS

- \checkmark Ethylene glycol
- \checkmark Methanol
- \checkmark Salicylates
- \checkmark Propylene glycol

Normal anion gap (Hyperchloremic) MET.ACIDOSIS causes

❖ Gastrointestinal bicarbonate loss

- A. Diarrhea
- B. External pancreatic or small-bowel drainage
- C. Ureterosigmoidostomy, jejunal loop, ileal loop
- D. Drugs
- 1. Calcium chloride (acidifying agent)
- 2. Magnesium sulfate (diarrhea)
- 3. Cholestyramine (bile acid diarrhea)

❖ Renal acidosis

- A. Hypokalemia
- 1. Proximal RTA (type 2)
- 2. Distal (classic) RTA (type 1)
- **B.** Hyperkalemia

❖ Drug-induced hyperkalemia (with renal insufficiency)

A. Potassium-sparing diuretics (amiloride, triamterene, spironolactone)

- **B.** Trimethoprim
- C. Pentamidine
- D. ACE-Is and ARBs
- E. Nonsteroidal anti-inflammatory drugs
- F. Cyclosporine and tacrolimus

❖ Other

A. Acid loads (ammonium chloride, hyperalimentation)

B. Loss of potential bicarbonate: ketosis with ketone excretion

C. Expansion acidosis (rapid saline administration)

Anion Gap and Albumin

- The normal AG is affected by patients plasma albumin concentration.
- \triangleright For every 1g/dl reduction in plasma albumin concentration the AG decreases by 2.5

 \triangleright Corrected AG = Calculated AG + [2.5 \times (4 – albumin)]

• A patient with poorly controlled IDDM missed his insulin for 3 days.

pH 7.1 HCO3 8 mEq/l PaCO2 20 mmhg Na 140 mEq/l CL 106 mEq/l and urinary ketones +++

Analysis

- pH is low so patient has **acidosis**. Low HCO3 is suggestive of metabolic acidosis. PaCO2 is also low suggestive of compensation.
- Expected compensation (fall in PaCO2) will be

PaCO2= HCO3 X 1.5 +8=8 X1.5 +8=12+8=20

- SO expected PaCO2 will be 20 mmhg, which matches with actual PaCO2, suggestive of simple ABD.
- AG is 26 (AG=Na-(Cl+HCO3)=140-(106+8)=140-114=26, which is high, S/o high AG Metabolic Acidosis. Presence of urinary ketones suggests presence of diabetic ketoacidosis.
- So the patient has high anion gap metabolic acidosis due to DKA

• ABG of patient with stable CHF on furosemide is as follows

pH 7.48 HCO3 34 mEq/l PaCO2 48 mmhg

- pH is high so patient has alkalosis.
- HCO3 is high S/O metabolic alkalosis.
- PaCO2 is high, S/O compensation (follows same direction rule)
- Expected compensation (rise in PaCO2) will be
- Expected PCO2 = $40 + (0.6 \text{ X } \Delta$ HCO3-)

 $\triangle HCO$ 3-= 34-24 = 10 mEg/L So, Change in PaCo $2 = 40 + (10 \times 0.6) = 46$ mmHg, which almost matches with actual PaCO2 which is 48 mEq/L, Suggestive of simple ABD.

• So patient has **primary metabolic alkalosis due to diuretics.**

• Following sleeping pills ingestion, patient presented in drowsy state with sluggish respiration with respiratory rate 4/min.

pH 7.1 HCO3 28 mEq/L PaCO2 80 mmhg PaO2 42 mmhg

- pH is low so patient has acidosis.
- High PaCO2 is S/O respiratory acidosis.
- Low PaO2 -hypoxia, supports diagnosis of respiratory failure- acidosis. HCO3 is also high suggestive of compensation (same direction rule).

Is it Acute OR chronic respiratory disorder??? **IN ACUTE (** \triangle **pH)** = $0.008 \times \triangle$ **PaCO2**= $0.008 \times (80-40) = 0.32$ **IN CHRONIC (** \triangle **pH)** = $0.003 \times \triangle$ **PaCO2**= $0.003 \times (80-40) = 0.12$

Δ pH = 7.4 – 7.1 = 0.3………. So It is Acute Disorder

PH \downarrow CO2 \uparrow HCO3 \uparrow HCO3 increased for compensation but PH is still abnormal so there is partial compensation

• So, the patient has **Acute respiratory acidosis partially compensated due to respiratory failure,** due to sleeping pills.

Clinical correlation: Example 1

• A 15 year old boy is brought from examination hall in apprehensive state with complain of tightness of chest.

$pH 7.54$ HCO3 21 mEq/L PaCO2 21 mm of hg

Example 1 : Analysis

- pH is high so patient has alkalosis.
- Low PaCo2 is suggestive of respiratory alkalosis.

Is it Acute OR chronic respiratory disorder??? **IN ACUTE (** \triangle **pH)** = $0.008 \times \triangle$ PaCO2= $0.008 \times (40-21) = 0.15$ **IN CHRONIC (** \triangle **pH)** = $0.003 \times \triangle$ **PaCO2**= $0.003 \times (40 - 21) = 0.057$ **Δ pH=7.54 - 7.4** = 0.14………. So It is Acute Disorder

HCO3 decreased for compensation but PH is still abnormal so there is partial compensation

• So the patient has acute respiratory alkalosis partialy compensated due to anxiety.

• A case of hepatic failure has persistent vomiting

pH 7.54 HCO3 38 mEq/L PaCO2 44 mmhg

pH is high so patient has alkalosis. HCO3 is high S/O metabolic alkalosis (due to vomiting). PaCO2 is high suggestive of compensation (follows same direction rule)

• Expected compensation (rise in PaCO2) will be

Rise in PaCO2= 0.6 X rise in HCO3= 0.6 X (38-24) =0.6 X14=8.4

• So expected PaCO2 will be 40+8.4 =48.4 mmhg. But actual value of PaCO2 is lesser than expected PaCO2 (44 vs 48.4 mmhg) which suggests presence of additional respiratory alkalosis (hepatic failure can cause respiratory alkalosis).

• So, patient has mixed disorder, **metabolic alkalosis with respiratory alkalosis.**

62

\triangleright STEP 1 – ACIDEMIA \triangleright STEP 2 – pH \iint PCO₂ \iint Respiratory

STEP 3 PH expected ➢ PH acute=7.40 - 0.008(92 - 40) =6.984 PH chronic=7.40 - 0.003(92 - 40) =7.244 PH (7.2) b/w 6.984 to 7.244

partially compensated Primary Respiratory Acidosis,

STEP 4

Mild hypoxemia

➢ STEP 1 –ACIDEMIA \triangleright STEP 2 – pH \downarrow PCO2 METABOLIC

➢ STEP4 – PCO2 expected $PCO2 = (1.5 \times HCO3) + 8 \pm 2$ $(1.5 \times 7.8) + 8 \pm 2=$ $19.7 \pm 2 = 17.7 - 21.7$ ➢ STEP5 ANION GAP $= (Na + K) - (HCO3 + Cl)$ $= (140.6 + 4) - (7.80 + 102)$ $= 34.8$

HIGHAG Met.Acidosis

