Arterial Blood Gas Interpretation

0

Assistant Professor Dr. Maha Alsadik

>ABG Sampling

Interpretation of ABG
Oxygenation status
Acid Base status

Case Scenarios

ABG – Procedure and Precautions

> Ideally - Pre-heparinised ABG syringes

- Syringe should be **FLUSHED** with 0.5ml

of Heparin solution and emptied.

Do not leave excessive heparin in the Syringe

Only small 0.5ml Heparin for flushing and discard it
 Syringes must have > 50% blood. Use only 2ml or less syringe

Sites for obtaining ABG

- Radial artery (most common)
- Brachial artery
- Femoral artery
- Radial is the most preferable site used because:
- It is easy to access
- It is not a deep artery which facilitate palpation, stabilization and puncturing
- The artery has a collateral blood circulation 4

ALLEN'S TEST

It is a test done to determine that collateral circulation is present from the ulnar artery

Ensure No Air Bubbles. Syringe must be sealed immediately after withdrawing sample.

Contact with AIR BUBBLES

Air bubble = $PO_2 150 \text{ mm Hg}$, $PCO_2 0 \text{ mm Hg}$ Air Bubble + $Blood = PO_2 PCO_2$

> ABG Syringe must be transported at the earliest to the laboratory for EARLY analysis via COLD CHAIN

CHANGE IN VALUES EVERY 10 MINUTES	UNICED SAMPLE 37°C	ICED SAMPLE 4°C
pH	0.01	0.001
PCO ₂	I mm Hg	0.1 mm Hg
PO ₂	0.1 %	0.01 %

Interpretation of ABG
OXYGENATION
ACID BASE

Blood Gas Report

- Oxygenation Information
 PaO₂ [oxygen tension]
 SaO₂ [oxygen saturation]
- Acid-Base Information
- •PH
- •PaCO₂
- •HCO₃ [measured]

As Age the expected PaO₂

• $PaO_2 = 109 - 0.4$ (Age)

As FiO_2 the expected PaO_2

- Alveolar Gas Equation:
 - $P_{A}O_{2}=(P_{B}-P_{H_{2}O}) \times FiO_{2} P_{a}CO_{2}/R$

 P_AO_2 = partial pressure of oxygen in Alveolar gas, P_B = Barometric Pressure (760mmHg), P_{H_2O} = water vapor pressure (47 mm Hg), FiO_2 = fraction of inspired oxygen, \mathbf{R} = respiratory quotient (0.8)

> Determination of the PaO2 / FiO2 ratio

Inspired Air FiO₂ = 21% PiO₂ = 150 mmHg

PaO₂/ FiO₂ ratio

Gives understanding Patient Oxygenation with Respect to Oxygen delivered, more important than simply the PaO₂ value.

Example,

	Patient 1 On Room Air	Patient 2 On MV
PaO2	68	90
FiO2	21% (0.21)	50% (0.50)
P:F Ratio	324	180

HYPOXIA VERSUS HYPOXEMIA

Hypoxia is defined as a reduction of oxygen supply at the tissue level, which is not measured directly by a laboratory value

Patients may not indicate signs of hypoxemia Hypoxemia is defined as a condition where arterial oxygen tension or partial pressure of oxygen (PaO2) is measured to be between 80 and 100 mmHg

Patients will also experience hypoxia

Pediaa.com

CLASSIFICATION OF HYPOXEMIA

Classifications	PaO ₂ (rule of thumb)
Normal	80-100 mm Hg
Mild hypoxemia	60-80 mm Hg
Moderate hypoxemia	40-60 mm Hg
Severe hypoxemia	<40 mm Hg

This classification is based on predicted *normal values for a patient who is less* <u>than 60 years old and breathing room air.</u> For older patients, <u>subtract 1 mm</u> <u>Hg for every year over 60 years of age</u> from the limits of mild and moderate hypoxemia.

A PaO2 of less than 40 mm Hg represents severe hypoxemia at any age.

Causes of hypoxemia 1) Reduced partical pressure of oxygen in the inspired air

2) Alveolar hypoventilation

3) Ventilationperfusion mismatch

> 4) Shunt (intracardiac or intrapulmonary)

5) Impaired alveolarcappilary diffusion

Shunt is perfusion of poorly ventilated alveoli. Physiologic dead space is ventilation of poor perfused alveoli.

VQ mismatch

Capillary

Shunt Physiology

The A-a gradient

A-a gradient = $P_AO2 - P_aO2$

Normal = < 15mmHg Normal rises 1mmHg per decade

CAUSE	P _{aO2}	A – a GRADIENT	EFFECT OF SUPPLEMENTAL O2
High Altitude	Decreased	Normal	Improves
Hypoventilation	Decreased	Normal	Improves
Diffusion Defect	Decreased	Increased	Improves
V°/Q Defect	Decreased	Increased	Improves
R 夫 L Shunt	Decreased	Increased	Does not

Acid Base Balance

- H⁺ ion concentration in the body is precisely regulated
- The body understands the importance of H⁺ and hence devised DEFENCES against any change in its concentration-

BICARBONATE BUFFER SYSTEM Acts in few seconds

C

D

B

A

S

E

RESPIRATORY REGULATION Acts in few minutes RENAL REGULATION Acts in hours to days

Assessment of ACID BASE Balance

• Definitions and Terminology

ACIDOSIS – presence of a process which tends to
 PH by virtue of gain of H ⁺ or loss of HCO3⁻
 ALKALOSIS – presence of a process which tends to [↑] pH by virtue of loss of H⁺ or gain of HCO3⁻

If these changes, change pH, suffix 'emia' is added
ACIDEMIA – reduction in arterial pH (pH<7.35)
ALKALEMIA – increase in arterial pH (pH>7.45)

Causes of Acid-Base Balance

Metabolic Acidosis Diabetic ketoacidosis Diarrhea Renal failure Shock Aspirin overdose Sepsis	Metabolic Alkalosis Loss of gastric secretions Overuse of antacids K+ wasting diuretics
Respiratory Acidosis Hypoventilation COPD Airway obstruction Drug overdose Chest trauma Pulmonary edema Neuromuscular disease	Respiratory Alkalosis Hyperventilation Hypoxia Anxiety High altitude Pregnancy Fever

Compensatory responses and their mechanisms.

Primary disorder	Primary Chemical change	Compensatory response	Compensatory Mechanism
Metabolic Acidosis	↓ HCO3-	↓ PCO2	Hyperventilation
Metabolic Alkalosis	↑ HCO3-	↑PCO2	Hypoventilation
Respiratory Acidosis	↑PCO2	↑НСО3-	
Acute			Intracellular Buffering
Chronic			Renal Generation of HCO3-
Respiratory Alkalosis	↓ PCO ₂	↓HCO3-	
Acute			Intracellular Buffering
Chronic			Renal secretion of HCO3-

If PCO2 & [HCO3] move in opposite directions

Normal Values

ANALYTE	Normal Value	Units
pН	7.35 - 7.45	
PCO2	35 - 45	mm Hg
PO2	80 - 100	mm Hg`
[HCO3]	22 - 26	meq/L
SaO2	95-100	%
Anion Gap	12±4	meq/L
ΔHCO3	+2 to -2	meq/L

Step Wise Approach to Interpretation of ABG **Reports**

Step 1 Acidosis, Alkalosis, or normal?

□ PH is < 7.35, ⇒ Primary process is acidosis. □ PH is > 7.45, ⇒ Primary process is alkalosis.

Step 2: Is the primary disturbance Respiratory or Metabolic?

Look at the paCO2 and pH

- If both go with the same direction the primary disturbance is ⇒ Metabolic
 - If both go with different direction the primary disturbance is ⇒ Respiratory

Step 3: For Primary Respiratory disturbance, is it acute or chronic? then Compansation

Acute or chronic

PaCO2 and pH

Acute condition.

for each 1mm Hg PaCO2 \Rightarrow pH changes 0.008 . pH changes (Δ pH) = 0.008 × Δ PaCO2

Chronic condition.

for each 1mm Hg PaCO2 \Rightarrow pH changes 0.003 pH changes (Δ pH) = 0.003 × Δ PaCO2 IF RESPIRATORY, IS IT ACUTE OR CHRONIC? >Acute respiratory disorder - $\Delta pH_{(e-acute)} = 0.008x \Delta Pco_2$ >Chronic respiratory disorder - $\Delta pH_{(e-chronic)} = 0.003x \Delta pCO_2$

Compare, $pH_{measured}(pH_m) v/s pH_{expected}(pH_e)$

Step 3: For Primary Respiratory disturbance, is it acute or chronic? then Compansation

Compansation

PaCO2 and HCO3

Respiratory acidosis:

Acute condition.

for each 10mm Hg PaCO2 $\uparrow \Rightarrow$ HCO3 \uparrow by 1 meq.

Chronic condition.

for each 10mm Hg PaCO2 ↑⇒ HCO3 ↑by 4 meq

Respiratory alkalosis:

Acute condition.

for each 10mm Hg PaCO2 $\downarrow \Rightarrow$ HCO3 \downarrow by2 meq.

Chronic condition.

for each 10mm Hg PaCO2 $\downarrow \Rightarrow$ HCO3 \downarrow by5 meq.

	acidosi s	alkalos is
acute	1	2
chronic	4	5

a. <u>Respiratory acidosis</u>

	Phase	РН	F	PaCO2		HCO3
А. Т. Т	UNCOMPENSATED	\downarrow	↑			
	Because there is n acidosis the HC	•			neys	yet to
	Phase	PH		PaCO2		HCO3
	PARTIAL COMPENSAT	TED ↓		Î		1
	The kidneys start the amount of cir	•		e acidos	is by	increasing
	Phase	РЫ	P	aCO2		HCO3

Phase	PH	PaCO2	HCO3
FULL COMPENSATED	Ν	1	1

PH return to normal PaCO2 & HCO3 levels are still high to correct acidosis 33

B. <u>Respiratory alkalosis</u>

Phase	РН	PaCO2	HCO3	
UNCOMPENSATED	1	\downarrow		
Because there is n acidosis the HCC	•		eys yet to	
Phase	PH	PaCO2	HCO3	
PARTIAL COMPENSAT	TED ↑	\downarrow	\downarrow	
The kidneys start to respond to the alkalosis by decreasing the amount of circulating HCO3				
Phase	РН	PaCO2	HCO3	
FULL COMPENSATED	Ν	\downarrow	\downarrow	

PH return to normal PaCO2 & HCO3 levels are still low to correct alkalosis 34

Step4: For a metabolic disturbance, is the respiratory system compensating OK?

Metabolic acidosis Expected PCO2 =(1.5 X HCO3-) + 8 ±2 Winter's Equation

Metabolic alkalosis Expected PCO2 = $40 + (0.6 \times \Delta HCO3)$

Quick rule of thumb : PCO₂ = last 2 digits of pH

For any metabolic disorder

Step4: For a metabolic acidosis, Anion gap?

Electrochemical Balance in Blood

CAUSES OF METABOLIC ACIDOSIS (High anion gap)→(Normochloremic)

LACTIC ACIDOSIS KETOACIDOSIS ✓ Diabetic ✓ Alcoholic ✓ Starvation RENAL FAILURE (acute and chronic)

- ✓ Ethylene glycol
- ✓ Methanol
- ✓ Salicylates
- ✓ Propylene glycol

Normal anion gap(Hyperchloremic) MET.ACIDOSIS causes

Gastrointestinal bicarbonate loss

- A. Diarrhea
- B. External pancreatic or small-bowel drainage
- C. Ureterosigmoidostomy, jejunal loop, ileal loop
- D. Drugs
- 1. Calcium chloride (acidifying agent)
- 2. Magnesium sulfate (diarrhea)
- 3. Cholestyramine (bile acid diarrhea)

Renal acidosis

- A. Hypokalemia
- 1. Proximal RTA (type 2)
- 2. Distal (classic) RTA (type 1)
- B. Hyperkalemia

Drug-induced hyperkalemia (with renal insufficiency)

A. Potassium-sparing diuretics (amiloride, triamterene, spironolactone)

- B. Trimethoprim
- C. Pentamidine
- D. ACE-Is and ARBs
- E. Nonsteroidal anti-inflammatory drugs
- F. Cyclosporine and tacrolimus

💠 Other

A. Acid loads (ammonium chloride, hyperalimentation)

B. Loss of potential bicarbonate: ketosis with ketone excretion

C. Expansion acidosis (rapid saline administration)

Anion Gap and Albumin

- The normal AG is affected by patients plasma albumin concentration.
- For every 1g/dl reduction in plasma albumin concentration the AG decreases by 2.5

Corrected AG = Calculated AG + [2.5 × (4 – albumin)]

• A patient with poorly controlled IDDM missed his insulin for 3 days.

pH 7.1 HCO3 8 mEq/l PaCO2 20 mmhg Na 140 mEq/l CL 106 mEq/l and urinary ketones +++

Analysis

- pH is low so patient has acidosis. Low HCO3 is suggestive of metabolic acidosis. PaCO2 is also low suggestive of compensation.
- Expected compensation (fall in PaCO2) will be

PaCO2= HCO3 X 1.5 +8=8 X1.5 +8=12+8=20

- SO expected PaCO2 will be 20 mmhg, which matches with actual PaCO2, suggestive of simple ABD.
- AG is 26 (AG=Na-(Cl+HCO3)=140-(106+8)=140-114=26, which is high, S/o high AG Metabolic Acidosis. Presence of urinary ketones suggests presence of diabetic ketoacidosis.
- So the patient has high anion gap metabolic acidosis due to DKA

• ABG of patient with stable CHF on furosemide is as follows

pH 7.48 HCO3 34 mEq/l PaCO2 48 mmhg

- pH is high so patient has alkalosis.
- HCO3 is high S/O metabolic alkalosis.
- PaCO2 is high, S/O compensation (follows same direction rule)
- Expected compensation (rise in PaCO2) will be
- Expected PCO2 = 40 + (0.6 X ΔHCO3-)

ΔHCO3-= 34-24 = 10 mEq/L So,Change in PaCo2 = 40 + (10x 0.6) = 46 mmHg, which almost matches with actual PaCO2 which is 48 mEq/L, Suggestive of simple ABD.

 So patient has primary metabolic alkalosis due to diuretics. • Following sleeping pills ingestion, patient presented in drowsy state with sluggish respiration with respiratory rate 4/min.

pH 7.1 HCO3 28 mEq/L PaCO2 80 mmhg PaO2 42 mmhg

- pH is low so patient has acidosis.
- High PaCO2 is S/O respiratory acidosis.
- Low PaO2 -hypoxia, supports diagnosis of respiratory failure- acidosis. HCO3 is also high suggestive of compensation (same direction rule).

Is it Acute OR chronic respiratory disorder??? IN ACUTE (Δ pH) = $0.008 \times \Delta PaCO2 = 0.008 \times (80-40) = 0.32$ IN CHRONIC (Δ pH) = $0.003 \times \Delta PaCO2 = 0.003 \times (80-40) = 0.12$

Δ pH = 7.4 – 7.1 = 0.3..... So It is Acute Disorder

 $\begin{array}{lll} \mathsf{PH} \downarrow & \mathsf{CO2} \uparrow & \mathsf{HCO3} \uparrow \ldots \ldots \mathsf{HCO3} \text{ increased for compensation but PH is still} \\ \text{abnormal so there is partial compensation} \end{array}$

 So, the patient has Acute respiratory acidosis partially compensated due to respiratory failure, due to sleeping pills.

Clinical correlation: Example 1

• A 15 year old boy is brought from examination hall in apprehensive state with complain of tightness of chest.

pH 7.54 HCO3 21 mEq/L PaCO2 21 mm of hg

Example 1 : Analysis

- pH is high so patient has alkalosis.
- Low PaCo2 is suggestive of respiratory alkalosis.

Is it Acute OR chronic respiratory disorder??? IN ACUTE (Δ pH) = 0.008 × Δ PaCO2= 0.008 × (40-21)= 0.15 IN CHRONIC (Δ pH) = 0.003× Δ PaCO2= 0.003 × (40 -21)= 0.057 Δ pH=7.54 - 7.4 = 0.14...... So It is Acute Disorder

HCO3 decreased for compensation but PH is still abnormal so there is partial compensation

- So the patient has acute respiratory alkalosis partialy compensated due to anxiety.

• A case of hepatic failure has persistent vomiting

pH 7.54 HCO3 38 mEq/L PaCO2 44 mmhg

pH is high so patient has alkalosis. HCO3 is high S/O metabolic alkalosis (due to vomiting). PaCO2 is high suggestive of compensation (follows same direction rule)

- Expected compensation (rise in PaCO2) will be

Rise in PaCO2= 0.6 X rise in HCO3= 0.6 X (38-24) =0.6 X14=8.4

 So expected PaCO2 will be 40+8.4 =48.4 mmhg. But actual value of PaCO2 is lesser than expected PaCO2 (44 vs 48.4 mmhg) which suggests presence of additional respiratory alkalosis (hepatic failure can cause respiratory alkalosis).

 So, patient has mixed disorder, metabolic alkalosis with respiratory alkalosis.

CASE 1		
62 years old Male patient	22/7/2011	7:30 am
	pН	7.20
 COPD Breathlessness, 	PCO2	92 mmHg
progressively increased , aggravated	PO2	76 mmHg
 on exertion, 2 days Chronic smoker expiratory rhonchi 	Actual HCO3	28.00 mmol/1
	SO2	89
	FiO2	37%

STEP 1 – ACIDEMIA STEP 2 – pH I PCO₂ Respiratory

STEP 3 PH expected
 PH acute=7.40 - 0.008(92 - 40) =6.984
 PH chronic=7.40 - 0.003(92 - 40) =7.244
 PH (7.2) b/w 6.984 to 7.244

Primary Respiratory Acidosis, partially compensated

STEP 4

Mild hypoxemia

\int	CASE 2
\square	63 years old ,Male patient
	 CRF Breathlessness Decreased Urine Otpt. 2days Vomiting 10-15

31/7/2011	11:30pm
pН	7.18
PCO2	21.00
PO2	82
Actual HCO3	7.80
Base Excess	-18.80
SO2	95
Na	140.6
Chloride	102
Κ	4
Albumin	2.4

31/7/11	11:30pm
pH	7.18
PCO2	21.00
PO2	90
Actual HCO3	7.80
Base Excess	-18.80
SO2	95
Na	140.6
Chloride	102
K	4
Albumin	2.4

STEP 1 – ACIDEMIA STEP 2 – pH PCO2 METABOLIC

STEP4 – PCO2 expected
PCO2 = (1.5×HCO3) + 8 ±2
(1.5×7.8) + 8 ± 2=
19.7 ± 2 = 17.7 - 21.7
STEP5 ANION GAP
= (Na + K) – (HCO3 + Cl)
= (140.6 + 4) - (7.80 + 102)
= 3 4 .8

HIGH AG Met. Acidosis

