

Muscle Tissues

MUSCLE

Specialized for **contraction** allow movement The cells are called **fibres** (myocyte) because of their length sarcoplasm = protoplasm sarcolemma = cell membrane sarcoplasmic reticulum = smooth surfaced EPR = functional unit sarcomere = mitochondria sarcosomes Types: **Skeletal (voluntary)** striated cardiac (involuntary) smooth (involuntary)

Quit

Muscle cells can be placed into three categories:

a. Smooth Involuntary Muscle

i. found in hollow visceral organs such as the gut, uterus and blood vessels

ii. associated with various exocrine glands.

b. Striated Involuntary Muscle - found in the heart (cardiac muscle)

c. Striated Voluntary Muscle - makes up the skeletal muscles of the body

Skeletal Muscle

-known as **striated** or **voluntary muscle**, comprises some 40-50% of the body mass in adults

long fibres, the average length of skeletal muscle cells in humans is about
 3 cm (sartorius muscle up to 30 cm, stapedius muscle only about 1 mm).
 Their diameters vary from 10 to 100µm.

Main menu

Quit

-According to the **myoglobin** content there are:

Red fibres (Type I fibres)

- Red muscle fibres are comparatively thin. Contain lots of myoglobin
- Many mitochondria
- Slow twitching (contract slower) tire slower
- Found in **limbs**, **long** muscles of the **back** (long, slow contraction for erect posture). Red muscles are needed when **sustained** production of force is necessary

White fibres (Type II fibres)

- are thicker, Less myoglobin
- Less mitochondria
- Fast twitching, contraction is fast tire quickly
- Found in **extraocular** muscles, **digits** (for rapid and precise movement)
- Fast twitch fibers can be further categorized into Type IIa and Type IIb fibers.

Most muscles have all types in varying ratios

•During embryonic development **mesodermal cells** differentiate into uninuclear **myoblasts**, which elongate and **fuse** together to form **myotubes**, which further develop into the mature muscle fibers or **myofibers**. These myofibers are the basic units of skeletal muscle

•Mature skeletal muscle cells can't divide

•A further cell-type, known as **satellite cells (myosatellite cells)**, may be found adjacent to the sarcolemma. These are elongated, poorlydifferentiated cells that are very difficult to discern in typical preparations, but become active by **exercise** or during **repair** and **regeneration** processes after muscle injury.

Structure of skeletal muscle: Light Microscopy

- Many nuclei 35/mm
- Nuclei are oval situated peripheral
- Dark and light bands lie across the fiber
- No branching

(Junqueira et al, 1986).

Slide menu

This is skeletal muscle. The $\leftarrow \leftarrow$ show the peripheral nuclei of a skeletal muscle fiber. Notice the cross striations and that the fibers don't have any connections.

This is a cross section through skeletal muscle. The $\uparrow \downarrow$ indicate the peripheral nuclei of skeletal muscle fibers.

This is a drawing showing how a number of myofibrils make up a muscle fiber and how a number of fibers make up a **muscle fasciculus** (bundle). A number of these bundles make up a muscle. Notice the A,I and H bands and Z disc (line) across the myofibril.

Main menu

Quit

This drawing shows how the myofilaments (actin + myosin) make up a myofibril. It also shows the different bands across the fibril. Drawings 1,2,3,4 show cross sections through different parts of the fibril.

The average length of a **sarcomere** (functional unit) is about 2.5 μ m (contracted ~1.5 μ m, stretched ~3 μ m).

I-band - actin filaments,

A-band - myosin filaments which may overlap with actin filaments,

H-band - zone of myosin filaments only (no overlap with actin filaments) within the A-band,

Z-line - zone of apposition of actin filaments belonging to two neighbouring sarcomeres (mediated by a protein called alpha-actinin),

M-line - band of connections between myosin filaments (mediated by proteins, e.g. myomesin, M-protein).

Contraction:

A - band stays the sameI - band, H - bands become narrowerMyosin heads ratchet on the actin molecule

Notice how the I band changes during contraction. The next 2 slides will show how the I band changes during contraction. To see it go forwards and backwards.

Main menu

Slide menu

Main menu

Slide menu

Electron Microscopy

Two types of myofilaments **Actin**

- The actin molecule has 3 components:
 - actin monomers
 - tropomyosin 7 actin molecules long
 - troponin

Electron Microscopy

Two types of myofilaments **Actin**

- o actin monomers form 2 threads that spiral
- tropomyosin lie in the groove of the spiral
- o troponin attach every 40 nm
- o one end attach to the Z line
- \circ other end goes to the middle of the sarcomere
- \circ Z line consists of α actinin

Quit

Myosin:

- 15 nm φ
- 1,6 μm long
- The molecule has a head and a tail
- tails are parallel
- heads project in a spiral
- in the middle is a thickening

Main menu

Slide menu

Quit

Titin (Connectin)

titin is the third most abundant protein in muscle after myosin and actin
titin is the largest known protein in mammals (greater than 1 µm in length)

• located between the **myosin thick** filament and the **Z line**

•extends from the **Z-line** to the **M-line**.

•**Two** titin molecules extends from each half of thick filaments to Z line== **four** titin molecules for each thick filaments and Z line

•important in the **contraction**, functions as a molecular **spring** / **elastic** properties,

• (1) to **stabilize** the thick filament, (2) **center** it between the thin filaments, (3) prevent **overstretching** of the sarcomere, and (4) to **recoil** the sarcomere like a spring after it is stretched

• *i.e.* keep the filaments of the contractile apparatus in **alignment** and to the **passive stretch** resistance of muscle fibres.

Sarcolemma:

- 9 nm thick
- invaginate to form T-tubule
- myofibrils attach to the sarcolemma

Sarcoplasmic Reticulum:

- specialized smooth EPR, regulates muscle contraction
- Consists of T-tubules, terminal cisternae and sarcotubules
- It is speculated that there are gap junctions between the T-tubule and terminal cisterna
- An impulse is carried into the fiber by the T-tubule from where it goes to the rest of the sarcoplasmic reticulum

Nerves: (motor)

The axon of a motor neuron branches and ends in **motor end plates** (**myoneural junction**) on the fiber

The excitatory transmitter at the motor end plate is **acetylcholine**

2

This is the motor end plate. Slide 1 shows a low magnification. The 4 indicate 2 motor end plates. The \rightarrow in slide 2 shows where the myelin sheath ends. Slide 3 shows a single motor end plate.

Nerves: sensory

- Specialized fusiform sensory organ called spindles (function as stretch receptors) form sensory receptors in muscles telling the brain how far the muscle has stretched

(Ross and Romrell, 1989).

A number of small specialised intrafusal muscle fibres (nuclear bag fibres and nuclear chain fibres) are surrounded by a capsule of connective

tissue.

Stretch receptor

Connective tissue coverings of the muscle

- Endomysium around fibres, perimysium around bundles (fascicle) and epimysium around the whole muscle
- blood vessels and nerves lie in these connective tissue coverings.
- The CT goes over into a tendon or aponeurosis which attaches to the periosteum

Tendon/ Ligament / Fasciae

- •Tendon connect muscle to bone
- •Ligaments join bone to bone
- •Fasciae connect muscles to muscles and soft tissues.
- All made of collagen, present in different orientations

The second		
 		12 A.M. 12 March 10
 	_	
TEND	ON	

Tendon

•dense regular connective tissue fascicles encased in dense irregular connective tissue sheaths.

•Normal healthy tendons are composed mostly of **parallel** arrays of **collagen** fibers closely packed together// **fibroblasts** between fibers

•The dry mass = **86% collagen** (98% type I), 2% elastin, 1–5% proteoglycans, and 0.2% inorganic

• Aponeurosis, are layers of flat broad tendons. They have a shiny, whitishsilvery color, are histologically similar to tendons, with limited blood supply e.g.

- Anterior abdominal aponeuroses
- Posterior lumbar aponeuroses

Ligament

band of dense regular connective tissue bundles made of collagenous fibers protected by dense irregular connective tissue sheaths.

- •Ligaments connect bones to other bones to form joints // ligaments **limit** the mobility of articulations // or prevent certain movements
- •Have **more** elastic fibres and more **ground** substances than tendon
- •More **weaving** pattern and more **random** than tendon
- •non-parallel collagen arrangement, aligned in direction of **imposed** stress

cruciate ligament

tendon

