

ADRENERGIC NEURONS INHIBITORS

PREPARED BY: HEBA AHMED HASSAN

ASSJSTANT PROFESSOR OF CLJNJCAL PHARMACOLOGY

FACULTY OF MEDJCJNE, MUTAH UNJVERSJTY, JORDEN

Tyr, tyrosine; *TH*, tyrosine hydroxylase; *DD*, DOPA decarboxylase; *DA*, dopamine; *DBH*, dopamine β -hydroxylase; *NE*, norepinephrine

I-Synthesis, storage, release and termination of the action of catecholamines

(I) Synthesis:

- 1- It occurs in the sympathetic nerve endings.
- 2-**Tyrosine** is actively transported from extracellular fluid to sympathetic endings by Na⁺ dependent carrier.
- 3- In the cytoplasm:
- Tyrosine is hydroxylated to **DOPA** by tyrosine hydroxylase and this is the *rate limiting step* in the synthesis of catecholamines
- DOPA is decarboxylated to **dopamine** by dopa decarboxylase; dopa decarboxylase is non-specific enzyme as it can also convert α -methyldopa to α -methyldopamine.

4- **Dopamine** is transported into the vesicle by a carrier. The same carrier can transport NE and several other amines into these vesicles.

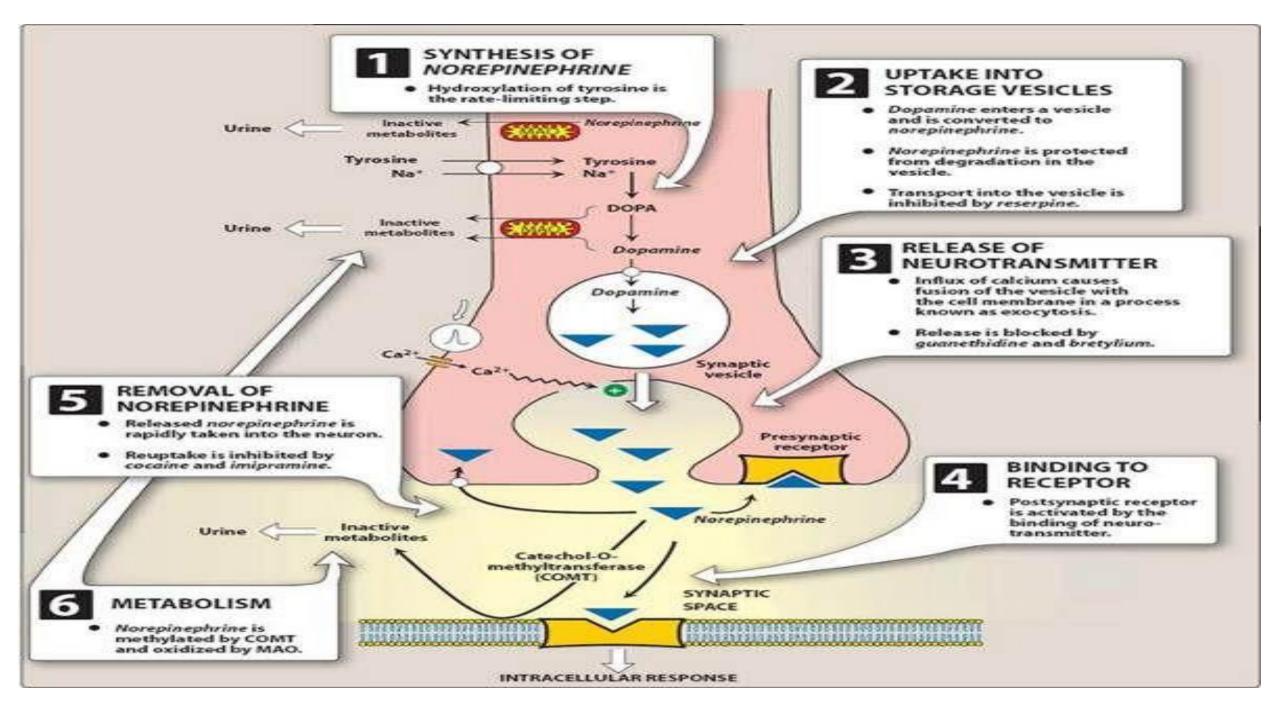
- 5- Inside the vesicles dopamine is hydroxylated to NE.
- 6- In the **adrenal medulla** and certain areas of the brain NE is methylated to **EP** by N-methytransferase.
- (II) Storage:
- -NE is stored in specific granules at the nerve endings.
- III) Release:

1- Release of the transmitter occurs when the action potential opens voltage-sensitive Ca^{++} channels leading to increase in the intracellular Ca^{++} which cause fusion of the vesicles with the surface membrane (exocytosis) resulting in expulsion of NE, cotransmitters (as ATP and certain peptides) and dopamine hydroxylase

-The released NE acts on the adrenoceptors on the post-synaptic membrane causing change in ionic conductance.

(IV) Termination of the action of the released catecholamines:

-It occurs by 2 mechanisms:


a) **<u>Active reuptake</u>** which is *the most important* mechanism and includes:

-Uptake 1 into the sympathetic nerve terminal which is *the most important* -Uptake 2 into post-junctional cells (*less important*) to be metabolism by **COMT**.

b) **Enzymatic metabolism** by **MAO** and **COMT**:

-Both MAO and COMT are widely distributed throughout the body including the

brain with highest concentration in *liver and kidney*. However, <u>little or no</u> COMT is found in adrenergic neurons.

• these drugs reduce adrenergic neurotransmission by affecting the synthesis, storage, release, or reuptake of norepinephrine

(NE) in sympathetic neurons.

• they are mainly used for hypertension, psychiatric disorders, or

experimental research.

1. Drugs that inhibit NE synthesis these drugs block the enzymes involved in NE production, reducing adrenergic transmission.

Drug	Mechanism of Action	Effects	Clinical Use
Metyrosine (α- Methyltyrosine)	Inhibits Tyrosine Hydroxylase (TH), the rate- limiting enzyme in NE synthesis	\downarrow NE, \downarrow dopamine (DA), \downarrow epinephrine (E); hypotension sedation	Pheochromocytoma (to lower 'catecholamines)
Carbidopa	Inhibits DOPA decarboxylase, preventing conversion of L-DOPA to dopamine (DA)	↓ DA, ↓ NE; does not cross BBB	Used with Levodopa in Parkinson's disease
Methyldopa	Converted to α -methyl-NE, a false neurotransmitter that replaces NE and activates α 2-receptors (CNS inhibition)	↓ Sympathetic output,	Hypertension in pregnancy

9

2. Drugs that inhibit NE storage

these drugs deplete ne from vesicles by interfering with vesicular monoamine transporter (VMAT-2), leading to decreased adrenergic transmission.

Drug	Mechanism of Action	Effects	Clinical Use
	Irreversibly inhibits VMAT-2,	Depletes catecholamines \rightarrow	Hypertension (obsolete)
Reserpine	preventing storage of NE, DA,	hypotension, bradycardia,	Hypertension (obsolete), Huntington's disease (low dose)
	and serotonin in vesicles	depression and suicide	
Tetrabenazine	Reversible VMAT-2 inhibitor,	\downarrow DA & NE \rightarrow sedation,	Huntington's disease, tardive
	reducing DA & NE storage	movement suppression	dyskinesia
	Similar to tetrabenazine but	Less frequent dosing than	Huntington's disease, tardive
Deutetrabenazine	longer-lasting	tetrabenazine	dyskinesia

3. Drugs that inhibit NE release

these drugs block exocytotic NE release, leading to sympathetic inhibition.

Drug	Mechanism of Action	Effects	Clinical Use
Guanethidine	Taken up by NET (norepinephrine transporter) → replaces NE in vesicles and blocks release	Profound hypotension, bradycardia and can cross blood brain barrier	Severe hypertension (obsolete)
Guanadrel	Similar to guanethidine but shorter-acting	Less severe hypotension than guanethidine, can not cross blood brain barrier	Hypertension (obsolete)
Bretylium	Blocks NE release by inhibiting vesicle fusion	Initial NE release (hypertension) \rightarrow then inhibition (hypotension)	•
Clonidine	α 2-agonist \rightarrow inhibits NE release via presynaptic α 2- autoreceptors	Lowers BP, causes sedation, bradycardia	Hypertension, opioid withdrawal, ADHD
Methyldopa	Converted to α -methyl-NE, which activates α 2-receptors to inhibit NE release	Sympathetic suppression \rightarrow hypotension, sedation	Hypertension in pregnancy
Dexmedetomidine	Central α2-agonist, potent NE release inhibitor	Sedation, bradycardia, hypotension	ICU sedation, anesthesia adjunct

4. Drugs that inhibit NE reuptake (NET inhibitors) (indirect sympatholytics)

these drugs block norepinephrine transporter (net), preventing reuptake and leading to either inhibition (depletion over time) or initial excitation.

Drug	Mechanism of Action	Effects	Clinical Use
Cocaine	Blocks NET, DAT, and SERT, preventing catecholamine reuptake	Initially increases NE (hypertension) \rightarrow then depletes stores (crash)	Local anesthetic (rare), drug of abuse
Tricyclic Antidepressants (TCAs) (e.g., Amitriptyline, Imipramine)	Inhibit NET and SERT, increasing synaptic NE and serotonin	Antidepressant effect, hypotension (long-term)	Depression, chronic pain, migraine prevention
Atomoxetine	Selective NET inhibitor	↑ NE in CNS, but peripheral NE depletion	ADHD (non-stimulant therapy)

5. Enzyme inhibitors that reduce NE breakdown

these drugs inhibit catecholamine-degrading enzymes, leading to either increased ne (MAO-A inhibitors) or reduced ne metabolites (MAO-B inhibitors).

MAO-A InhibitorsInhibits MAO-A, reducing breakdown of NE, DA, serotonin \NE, hypertension risk with tyramineDepression (last-line therapy)	Drug	Enzyme Inhibition	Effects	Clinical Use
		reducing breakdown of		▲ ·

MAO-B Inhibitors (Selegiline, Rasagiline)

Inhibits MAO-B, sparing dopamine more than NE Used in Parkinson's disease

Parkinson's disease

Clinical uses of adrenergic neuron blockers

Condition	Drug Used	Mechanism
Pheochromocytoma	Metyrosine	Inhibits NE synthesis
Hypertension (historical use)	Reserpine, Guanethidine	Inhibits NE storage/release
Huntington's disease, Tardive dyskinesia	Tetrabenazine	Depletes dopamine & NE
Ventricular arrhythmias	Bretylium	Blocks NE release (antiarrhythmic effect)

Side effects of adrenergic neuron blockers

Category	Common Side Effects
Inhibitors of NE Synthesis	Sedation, depression, orthostatic hypotension
VMAT Inhibitors	Depression (Reserpine), Parkinsonism (Tetrabenazine)
NE Release Inhibitors	Severe hypotension, diarrhea, fluid retention
NET Inhibitors	Hypertension (Cocaine), cardiac arrhythmias (TCAs)

