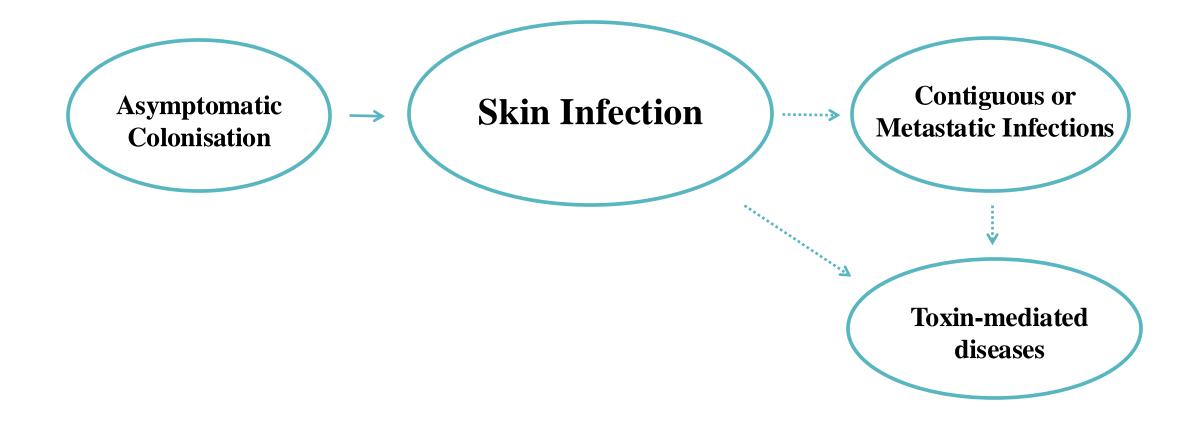
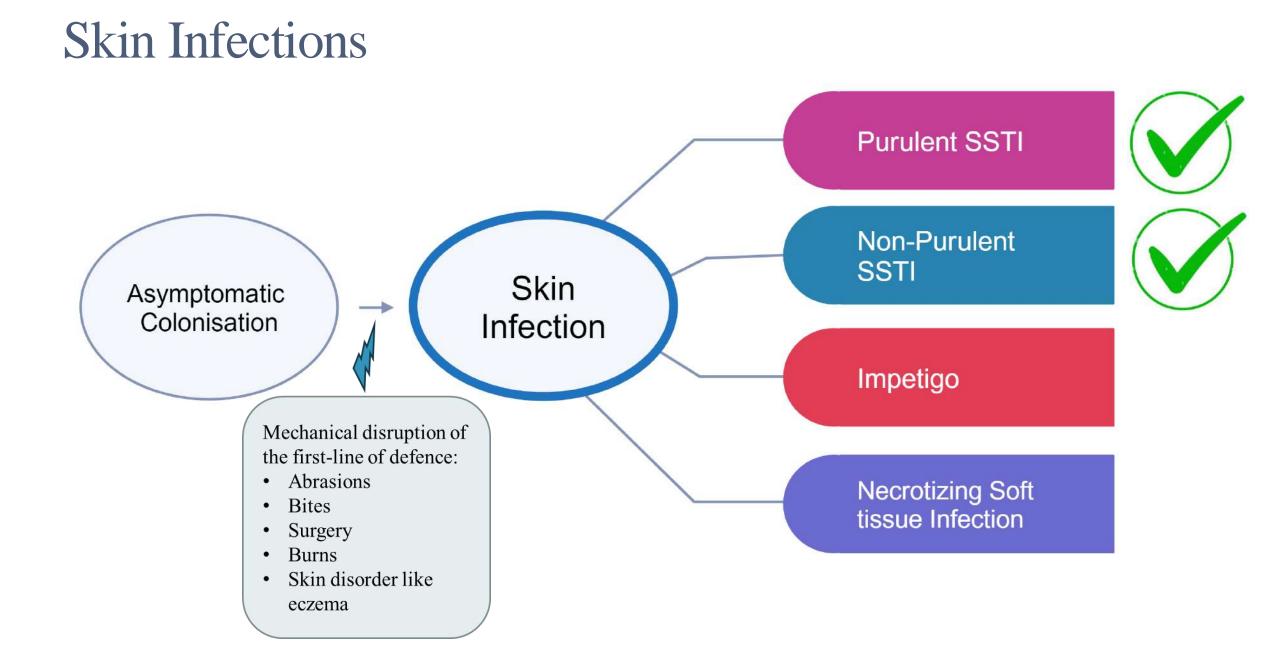
Bacterial Skin and Soft Tissue Infections 2


Dr. Hala Mahmoud Altarawneh


Bachelor degree in Medicine and Surgery - Mutah university MSC Medical Microbiology – University of Manchester PhD Medical Microbiology - University of Manchester

Outlines

- Skin and soft tissue infections (SSTIs)
 - Impetigo
 - Necrotizing fasciitis
- Toxin-mediated diseases- Staphylococcal scalded skin syndrome.
- Osteomyelitis
- Septic arthritis.

Progression of Bacterial Skin and Soft Tissue Infections

Impetigo

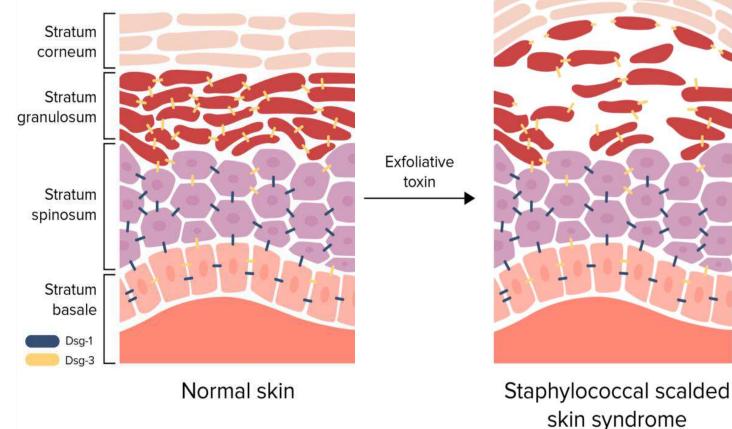
- A **contagious**, **superficial**, **purulent** bacterial skin infection involving the epidermis.
- Risk factors: poor hygiene, overcrowding, skin diseases (e.g dermatitis), warm/humid climate.
- Impetigo occurs mostly in children.
- Etiology:
 - *S. aureus*: causes 80% of cases, both bullous and non-bullous forms
 - S. pyogenes: causes approximately 10% of cases, non-bullous forms only
- In sever cases the infection invades deeper layer forming ecthyma

Impetigo: Subtypes - Non-bullous Impetigo

- Most common: approximately 70% of impetigo cases
- Begins as a rash with **papules** → **vesicles** surrounded by erythema → pustules, which rupture and ooze exudate (pus and serous fluid) that dries → pruritic **honey-coloured crusts** that heal with no scarring
- Lesions usually occur around the mouth and nose and/or on the hands
- Lesions may be pruritic, but non-tender

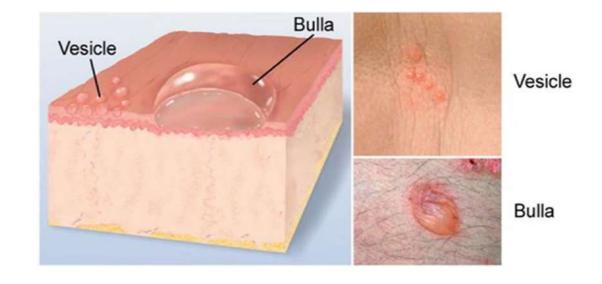
Impetigo: Subtypes - Bullous Impetigo

- 30% of impetigo cases
- Begins as a rash with papules → vesicles → large, flaccid bullae, which are pruritic and rupture, oozing cloudy or yellow fluid (pus) → dries into brown crusts → may lead to scarring in severe infections
- Lesions usually occur on the trunk
- May also present with systemic symptoms (fatigue, fever, weakness, general malaise)



Impetigo: Subtypes - Bullous Impetigo

Pathophysiology


- Staphylococcus produces exotoxin (Exfoliative toxin A&B).
- Exfoliative toxin cleaves desmoglein (Dsg) 1, disrupting the cell-to-cell adhesion of the stratum granulosum. This detachment of the superficial epidermis causes bullae formation and desquamation.

Question

Why is bullous impetigo typically painful, whereas nonbullous impetigo is usually not?

- Bullous impetigo form large bullae that extends deeper into the skin affecting more sensitive layers that contain a higher density of pain receptors.
- Non-bullous impetigo primarily involves the superficial layers of the skin, causing minimal disturbance to deeper, more sensitive tissues.

Impetigo: Subtypes - Ecthyma

- Rare
- Ulcerative impetigo that extends into the dermis (also known as "deep or ulcerative impetigo").
- Begins as a rash with papules → vesicles → sores that are painful, erythematous, and fluid- or pusfilled → coin-sized ulcers with a "punched-out" appearance covered with thick gray-yellow scabs → usually lead to scarring
- Lesions usually occur on the extremities.

Impetigo: Diagnosis and Treatment

- Diagnosis: clinical diagnosis based on typical manifestations of impetigo.
- Treatment:
 - Topical antibiotics: indicated any form of impetigo with a limited area affected
 - Options: Mupirocin
 - Oral antibiotics: Indicated for impetigo with large bullae or numerous lesions, or ecthyma.
 - Options: Targeting both *S. aureus* and GAS like penicillin's (flucloxacillinas)
 - Supportive care: Measures to reduce contagion: e.g., wound care, handwashing, contact precautions

Necrotizing Fasciitis

- Necrotizing fasciitis (NF) is an aggressive life-threatening infection involving rapid and extensive necrosis of the fascia and subcutaneous tissues that can develop into a life-threatening condition within hours.
- It is associated with a high mortality rate of approximately 20% 80%
 → surgical emergency
- Incidence: ≤ 1 case per 100,000 individuals per year

Necrotizing Fasciitis: Etiology

NF is divided into microbiologic categories based on the causative organism(s):

- Type I:
 - Most common type
 - Polymicrobial infection containing anaerobes and aerobes: *S. pyogenes*, Bacteroides, *E. coli*, Enterobacter, Klebsiella.
 - Often seen in older adults with comorbidities, particularly diabetes mellitus
- Type II:
 - Monomicrobial infection: Group A Streptococcus (most common), S. aureus
 - Occurs in any age group
 - Frequently found in individuals with no significant risk factors

Necrotizing Fasciitis: Pathophysiology

- Bacteria extend into the subcutaneous tissue from: Nearby ulcer or superficial infection, Trauma, Bloodstream (most often *S. pyogenes*)
- Infection causes occlusion of subcutaneous vessels → tissue and fascial ischemia → necrosis
- Damage occurs to superficial nerves \rightarrow localized anesthesia
- Hypoxic conditions $\rightarrow \downarrow$ neutrophil function \rightarrow proliferation of bacteria
- Infection and necrosis can rapidly travel along fascial planes, possibly due to bacterial enzymes and toxins.

Necrotizing Fasciitis: Pathophysiology

Microbial invasion of subcutaneous tissue occurs due to direct spread from local structures or 2ry to trauma

Causative bacteria proliferate in subcutaneous tissues planes Variety of endoand-exotoxins and enzymes released, facilitating the spread of infection along fascial planes

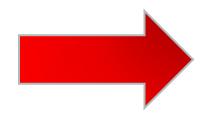
Disruption to the normal subcutaneous microcirculation Local ischaemia, nerve infarction, thrombosis of small vessels, and ultimately tissue necrosis

Necrotizing Fasciitis: Clinical features

- Only 15 to 34 % of patients with NF have an accurate diagnosis at admission
- Necrotizing fasciitis first spreads along the fascia before spreading to the superficial cutaneous tissue. Local findings may, therefore, be unremarkable, with patients experiencing a disproportionate level of pain.
- Skin and soft tissue findings:
 - Common sites of infection: Extremities (most common)
 - Early signs:
 - Acute, severe pain out of proportion disproportinate to skin signs
 - Erythema that **quickly spreads** over hours to days.
 - Warmth
 - Tense, indurated skin

Necrotizing Fasciitis: Clinical features (Cont.)

- Late signs:
 - Crepitus


- Bullae, or skin necrosis
- Anesthesia or paresthesia, ulceration
- Evidence of systemic toxicity
 - High fever, tachycardia, hypotension, and/or altered mental status.

Necrotizing Fasciitis: Diagnosis

• A definitive diagnosis of necrotizing fasciitis is made by **surgical exploration and debridement**.

Surgical exploration should not be delayed to obtain diagnostic information, if the clinical suspicion is high.

Necrotizing Fasciitis: Management

- Admit all patients with suspected or confirmed NF to hospital for treatment.
- Surgical debridement is the mainstay of treatment.
 - Necrotic tissue is removed.
 - Amputation may be required for severe disease affecting an extremity.
- Antibiotic therapy:
 - Start systemic, broad-spectrum antibiotic therapy immediately after blood cultures have been obtained.
 - Intravenous antibiotics should be given for coverage of gram-positive, gram-negative, and anaerobic bacteria

Necrotizing Fasciitis: Case Report

- A 44-year-old pathologist presented to the emergency department after sustaining a scalpel injury during a postmortem examination 16 hours previously. He had stabbed the dorsum of his left thumb and immediately irrigated the wound with water.
- At the time of presentation, he had erythema and severe pain in his thumb.
- Upon examination, he was afebrile and had a 0.5-cm laceration oriented obliquely over the dorsum of the of his thumb. There was a haemorrhagic blister distal to the laceration and minimal purpuric discolouration around the laceration.

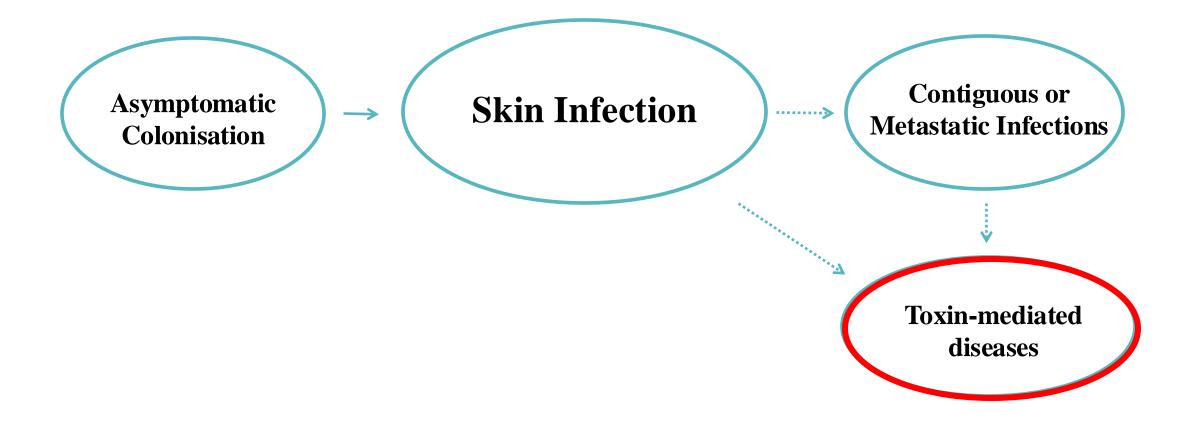
(Brichacek et al., 2017)

Necrotizing Fasciitis: Case Report (Cont.)

- two hours later the patient was reassessed and, although he remained afebrile with normal blood pressure, he had a sinus tachycardia.
- Erythema had progressed past our previous markings to involve the entire hand. His pain had increased and the area of purpura surrounding the initial laceration had progressed.
- Given this rapid change, the patient was taken to the operating theatre for urgent incision and débridement of suspected necrotizing fasciitis.

Necrotizing Fasciitis: Case Report (Cont.)

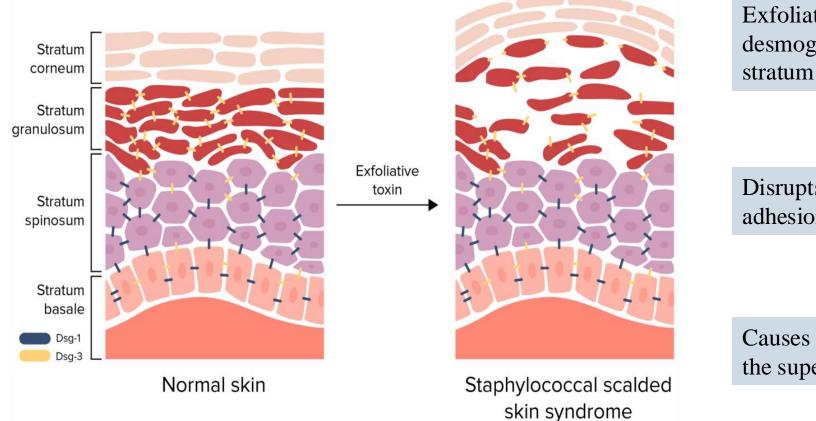
- Incision and drainage that was performed in the operating theatre.
- Frank purulence was found to track along the fascia overlying the extensor pollicis longus tendon.
- The fascia appeared nonviable in many areas, and the distal skin overlying the interphalangeal joint also appeared nonviable.
- The entire wound was irrigated with normal saline. Skin tissue overlying the dorsal interphalangeal joint was nonviable and required débridement.

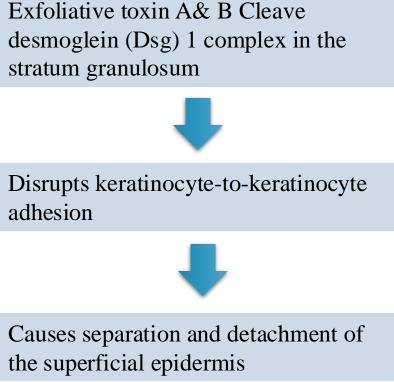


Necrotizing Fasciitis: Case Report (Cont.)

• This case, although uncommon, is a reminder that even a minor scalpel injury can result in a life-threatening infection. Substantial cutaneous infections that progress over a short period of time should alert clinicians to necrotizing fasciitis. Patients should be reassessed frequently; expert advice should be requested early, and imaging should not delay surgical treatment.

Progression of Bacterial Skin and Soft Tissue Infections


Toxin-mediated diseases: Staphylococcal scalded skin syndrome


- Staphylococcal scalded skin syndrome (SSSS) is an acute skin condition caused by **exfoliative toxins** from *S. aureus*.
- SSSS primarily affects infants and young children and most often follows a staphylococcal infection.

Toxin-mediated diseases: Staphylococcal scalded skin syndrome-Pathophysiology

- Starts as a localized, staphylococcal infection: Skin wounds, Conjunctivitis, Pharyngitis, Pneumonia.
 - The primary site of infection is not always evident.
- Staphylococcus produces exotoxin \rightarrow spread haematogenously
 - Two types of exotoxins: Exfoliative toxin A and Exfoliative toxin B

Toxin-mediated diseases: Staphylococcal scalded skin syndrome-Pathophysiology (Cont.)

The widespread blistering in SSSS is caused by the direct spread of *Staphylococcus aureus* bacteria throughout the body.

Toxin-mediated diseases: Staphylococcal scalded skin syndrome-Clinical Presentation

- Prodromal symptoms: Fever, irritability, malaise, and poor feeding.
- Sites of primary infection:
 - Infants: umbilical stump or diaper region
 - Older children: face
 - Frequently not evident

Toxin-mediated diseases: Staphylococcal scalded skin syndrome-Clinical Presentation (Cont.)

Cutaneous findings

- Erythematous macules on the face and flexural surfaces (e.g., axilla, inguinal folds, gluteal cleft), and Skin pain
- Erythema spreads diffusely within 24–48 hours.
 - Resembles an acute burn
 - Skin peeling and erosions in areas of friction with red, moist skin underneath
 - Fissures and crusting around the mouth, eyes, and nose
 - Widespread desquamation may take place within 36–72 hours.
 - Healing occurs within 2 weeks.

Toxin-mediated diseases: Staphylococcal scalded skin syndrome-Clinical Presentation (Cont.)

Cutaneous findings

Toxin-mediated diseases: Staphylococcal scalded skin syndrome-Clinical Presentation (Cont.)

- The loss of the skin barrier predisposes patients to: dehydration, electrolyte imbalances, sepsis, or hypothermia
- Diagnosis: Usually diagnosed clinically.

Toxin-mediated diseases: Staphylococcal scalded skin syndrome-

Treatment

- Antibiotic therapy
 - Patients without methicillin resistant *S. aureus* (MRSA) risk factors: Nafcillin OR oxacillin
 - Patients with MRSA risk factors: Vancomycin
- Supportive care
 - IV fluid hydration
 - Monitor and replace electrolytes
 - Gentle skin and wound care
 - Analgesia

Osteomyelitis

- Osteomyelitis is an infection of the bone that results from the spread of microorganisms from the blood (hematogenous), nearby infected tissue, or open wounds (non-hematogenous).
- Infections are most commonly caused by *S. aureus*, but a variety of organisms have been linked to osteomyelitis.

Osteomyelitis: Etiology and Classification

- Non-hematogenous osteomyelitis (80% of cases):
 - Caused by a spread of bacteria (typically multiple pathogens) from the surrounding environment.
 - Direct inoculation of bacteria due to: Surgery, Prosthetic devices, Trauma, Soft tissue infection.
 - Polymicrobial: *S. aureus* (present in > 50% of cases), *S. epidermidis*, Streptococcus.
- Hematogenous osteomyelitis (20% of cases):
 - Bacteria spread via blood supply from the primary site of infection.
 - Monomicrobial: S. aureus (most common), Streptococcus

Osteomyelitis: Clinical Presentation

Acute osteomyelitis

- Onset: within days or weeks; associated with acute bone inflammation
- Duration: < 2 weeks
- Signs and symptoms:
 - Localized swelling
 - Warmth
 - Erythema
 - Dull pain
 - Fever and chills

Osteomyelitis: Clinical Presentation

Chronic osteomyelitis

- Onset: develops slowly (over months or years) following acute infection
- Duration: typically > 6 weeks
- Associated with: avascular bone necrosis and sequestrum formation (necrotic bone fragment that has become detached from the original bone)
- Signs and Symptoms:
 - Similar to acute osteomyelitis
 - Intermittent bone pain
 - Draining sinus tract (pathognomonic)
 - Systemic findings: typically absent; may include low-grade fever, malaise

Osteomyelitis: Diagnosis

- Routine studies:
 - CBC \rightarrow thrombocytosis, possible leukocytosis
 - inflammatory markers $\rightarrow \uparrow$ CRP, \uparrow ESR
 - blood cultures → May be positive in hematogenous osteomyelitis but typically negative in exogenous osteomyelitis
 - If there is Purulent wounds/sinuses: Consider culture of purulent material.
 - Suspected hematogenous osteomyelitis : Consider additional studies (e.g., urine culture, chest x-ray) based on clinical presentation.

Osteomyelitis: Diagnosis (Cont.)

- Imaging:
 - X-ray: low sensitivity and specificity for osteomyelitis
 - MRI: Most sensitive and specific modality for osteomyelitis
- Consider bone biopsy with cultures to confirm the diagnosis if imaging findings and blood cultures inconclusive: .

Osteomyelitis: Treatment

- Antibiotic therapy:
 - Start most patients directly on pathogen-directed antibiotics based on culture results.
 - Methicillin-susceptible S. aureus (MSSA) \rightarrow oxacillin
 - Methicillin-resistant S. aureus (MRSA) \rightarrow Vancomycin
 - Consider switching to oral antibiotics after an initial IV course.
 - Duration of therapy is **normally 4–8 weeks**.

Osteomyelitis: Treatment (Cont.)

• Surgery:

- Chronic osteomyelitis or acute osteomyelitis refractory to antibiotic treatment →
 Debridement of necrotic bone and tissue and amputation may be considered in severe disease.
- Infected prosthetic joint or foreign body \rightarrow Removal to promote remission

Septic Arthritis

- Septic (infectious) arthritis is an infection of the joint space, which can occur in a native joint or a prosthetic joint.
- Patients with underlying joint diseases (e.g., rheumatoid arthritis) are at an increased risk of septic arthritis.
- Routes of infection include hematogenous spread (most common), direct inoculation (e.g., iatrogenic, penetrating trauma), and contiguous spread.
- Causative organisms: *S. aureus* (Most common in adults and children > 2 years)

Septic Arthritis: Clinical Presentation

- Patients with native joint infections usually present with:
 - An acutely swollen painful joint
 - Limited range of motion
 - Fever
- Patients with prosthetic joint infections (PJIs) usually have a milder, chronic course, which often makes diagnosis more challenging.

Septic Arthritis: Diagnosis

- Diagnosis: arthrocentesis: a diagnostic and/or therapeutic procedure in which synovial fluid is aspirated from a joint using a sterile needle.
 - Indicated in all patients with suspected septic arthritis.

Septic Arthritis: Treatment

- Joint drainage:
 - Native joints: Therapeutic arthrocentesis (drained to dryness) is indicated in all patients.
 - Prosthetic joints: Surgery to remove pus and infected tissue from the affected joint is typically required
- Antibiotic therapy: early administration of empiric antibiotic therapy then switch to culture-specific antibiotics once antibiotic sensitivities are known.
 - Gram-positive cocci \rightarrow Vancomycin (empiric)
 - MSSA \rightarrow Nafcillin
 - MRSA \rightarrow Vancomycin

Thank you