

Prof. KHALED ABDEL-SATER, PROF. OF PHYSIOLOGY

By the end of the lecture the student will able

- To understand hemoglobin, its formation, structure, and functions.
- To understand the fate of old red blood cells
- To describe the process of erythropoiesis and the factors that regulate it.
- To understand the role of erythropoietin in red blood cell formation
- To describe the definition, classification and manifestations of anemia .

Red Blood Cells (Erythrocytes)

lop viev

Normal value:

- Average number = 5 million / mm³. In adult female = 4.5 - 5 million / mm³ (due to menstruation & estrogen). In adult male = 5 - 5.5 million /mm³
- (due to testosterone hormone).
- In newborn = 7 million / mm³
- (due to intrauterine O_2 lack).

Shape: circular, biconcave, non nucleated discs.

Hemoglobin content

(normal value average =15 gm %).

12 – 16 gm/dl

may reach 19 gm/dl due to relative intrauterine hypoxia

Characters of RBCs

- 1- <u>Flexible</u>→ allows erythrocytes to be squeezed in small vessels without rupture. It is not elastic (ruptured when absorb more water).
- 2- <u>Biconcave</u> \rightarrow \uparrow oxygen and Co₂ carriage due to:
- A-↑ the surface area.
- B- Hemoglobin remains distributed in the center of the RBC.

GIVE REASONS:

- RBCs in newborn are about 7 million / mm3?

Due to intra-uterine hypoxia that stimulate erythropoietin. It represents a store of iron because milk is poor in that mineral

<u>-The biconcave shape of RBC is the optimal shape to its function?</u>

Because the biconcave shape leads to A^{\uparrow} the surface area. B- Hemoglobin remains distributed in the center of the RBC. C- To absorb water without rupture.

Hb

•Hemoglobin: 35% of RBC weight. •Forms of Hemoglobin:

- a. Oxyhemoglobin: When oxygen is bound to Hb. It gives blood its red color.
- b. **Deoxyhemoglobin:** When no oxygen is bound to Hb.
- c. **Carbaminohemoglobin:** When carbon dioxide is bound to Hb.
- d. **Carboxyhemoglobin:** When carbon monoxide is bound to Hb.

Hb

<u>1-Adult (HbA)</u>: contains 2 α chain and 2B chain (95-98% of adult Hb.)

<u>2-HbA2</u>: contains 2α chains and 2 delta. (2-3% of adult Hb.)

<u>3-Fetal Hb (HbF):</u> contains 2α and 2γ gamma (0.8-2% of adult)

<u>4-Glycosylated Hb: (Hb. A1C)</u> glucose is attached to terminal valine amino acid in B-chain. It is indicator of control diabetes in last 3 months. It is increased in poorly controlled diabetes.

<u>5-HbS</u>: It is abnormal type of Hb due to congenital abnormality of B-globin \rightarrow hemoglobin-S which causes sickle cell anaemia.

• Factors Affecting Erythropoiesis:

Bone marrow

• Factors Affecting Erythropoiesis:

1-Hypoxia ($\downarrow \downarrow O_2$ Supply to Tissues) most important factor

• Factors Affecting Erythropoiesis:

2-Healthy Kidney:

secretes <u>85 %</u> of erythropoietin hormone in response to hypoxia, anemia and androgen hormone

3-Healthy Liver:

1) Secretes <u>15 %</u> of erythropoietin hormone.

2) Storage for globulin, iron, vitamin B_{12} , folic acid and copper.

4-Healthy Bone Marrow: It is the site of formation <u>in adult</u>.

5-Healthy Diet:

-Iron, Proteins and vitamins:

*Vitamin B_{12} & folic acid = RBCs maturation factors and Vitamin C (for synthesis of Hb).

 $\downarrow Vitamin B_{12} \& folic acid \rightarrow Megaloblastic Anemia$

-Others: Copper & cobalt are cofactors in synthesis of Hb (needs small amount).

6-Hormones:

Androgen, thyroxin (general metabolic stimulant), adrenaline, noradrenaline, cortisol.

Morphological Classification:

- **a-Microcytic hypochromic anemia** e.g. iron deficiency anemia.
- **b-Normocytic normochromic anemia** e.g. a plastic, hemorrhagic and hemolytic anemias.
- **c-Macrocytic anemia (megalablastic)** e.g. vitamin B_{12} folic acid deficiency.

•Iron Deficiency Anemia:

- Def. : Microcytic hypochromic anemia.
- -Causes: deficiency of iron.
- <u>1- $\downarrow \downarrow$ Intake.</u>
- **<u>2-</u> ↓ ↓ Absorption**:
- a- $\downarrow \downarrow$ Hcl (gastritis or gastrictomy).
- **b- Intestinal** diseases.
- c- $\uparrow\uparrow$ Phosphate or $\downarrow\downarrow\downarrow$ Ca in diet.
- <u>3- ↑↑ Utilization:</u> ↑↑ Of demand (in females and infants). ↑↑ of blood loss (hemorrage).
- -Treatment: Oral ferrous iron.

Megaloblastic Anemia=Pernicious Anemia

- -Causes: deficiency of *vitamin B*₁₂
- -Manifestations: 1-Megaloblastic anemia. WBCs and platelets both decrease.
- 2-Degeneration of the peripheral and spinal nerves \rightarrow peripheral neuritis and subacute degeneration of spinal cord.
- 3-Atrophy of the digestive mucosa and hepatosplenomegally.

Folic Acid Deficiency anemia

GIVE REASONS:

-Anemia due to deficiency of copper, cobalt & vitamin C is rare?

Because these substances requirements are so small.

-Renal failure patients are always anemic?

Due to absence of erythropoietin hormone which is secreted by kidney and it is necessary for erythropoiesis.

What is important of

-Vit. B12 and folic acid in erythropoesis?

They are essential for synthesis of DNA, which is essential for nuclear maturation of blood cells (RBCs, WBCs & platelets) and division.

