

# Pharmacology of eye

#### PREPARED BY: HEBA AHMED HASSAN

ASSJSTANT PROFESSOR OF CLJNJCAL PHARMACOLOGY

FACULTY OF MEDJEJNE, MUTAH UNJVERSJTY, JORDEN

#### Sympathetic Innervation:

1- to dilator pupali muscle radial muscles of the iris, leading to pupil dilation (mydriasis)

- 2- to blood vessels within the eye, influencing ocular blood flow and intraocular pressure
- 3- to Müller's muscle leading to eyelid retraction
- 4- Beta-2 adrenoceptors in the ciliary body increase the secretion of aqueous humor but Alpha-
- 2 adrenoceptors in the ciliary body suppress it.

#### Parasympathetic innervation:

1-To constrictor pupillae muscle, narrowing the pupil in response to bright light (light reflex).

2-To the ciliary muscle, causing it to contract, leading to lens accommodation.

#### Drainage of aqueous humor:

Aqueous humor flows from the posterior chamber  $\rightarrow$  anterior chamber  $\rightarrow$  exits via two routes: 1- Conventional Pathway (90% of outflow):

Fluid traverses the trabecular meshwork  $\rightarrow$  Schlemm's canal  $\rightarrow$  episcleral veins.

2-Unconventional Pathway (10% of outflow):

Fluid drains through the ciliary muscle, suprachoroidal space, and sclera (uveoscleral route).

## <u>Drugs</u>

- 1- Drugs affecting pupil size
- **2-Treatment of Glaucoma**
- **3-Drugs that ↑↑ IOP**

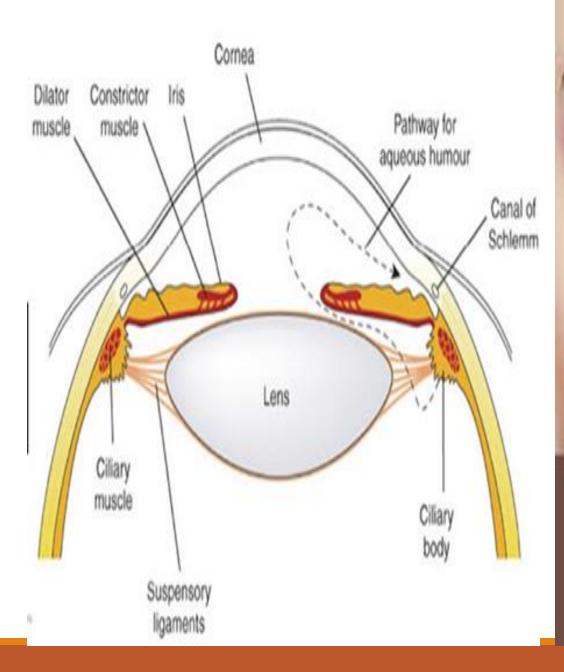
# A- Drugs affecting pupil size

#### **1- Miotics drugs**

| Drug Class                                 | Examples                        | Effect on Pupil | Mechanism                                                             |
|--------------------------------------------|---------------------------------|-----------------|-----------------------------------------------------------------------|
| Opioids (systemic)                         | Morphine, Heroin,<br>Fentanyl   | Miosis          | Activates μ-opioid<br>receptors, inhibiting<br>sympathetic tone.      |
| Cholinergic Agonists<br>(local)            | Pilocarpine, Carbachol          | Miosis          | Stimulates<br>parasympathetic system<br>(muscarinic receptors).       |
| Acetylcholinesterase<br>Inhibitors (local) | Physostigmine,<br>Neostigmine,  | Miosis          | Increases acetylcholine<br>levels, activating<br>muscarinic receptors |
| Guanthiden                                 |                                 | Miosis          | Reduces Release of NE in the eye:                                     |
| α1-Adrenergic Blockers                     | Prazosin, Tamsulosin            | Miosis          | Blocks sympathetic<br>stimulation of the<br>dilator muscle            |
| Sedatives / Barbiturates                   | Benzodiazepines (high<br>doses) | Miosis          | CNS depression reduces sympathetic tone.                              |

#### Locally acting miotics

(parasympathomimetics): stimulate <u>M3</u> receptors in


- 1- CPM  $\rightarrow$  miosis + wide angle of filtration & space of Fontana.
- 2- Cilliary muscle  $\rightarrow$  accommodation to near vision + open canal of Schlemm.
- 3- Some stimulate Nm receptors in upper eye lid  $\rightarrow$  upper eyelid twitches.
- <u>1- Direct parasympathomimetics:</u>
- -Choline esters: bethanichol(M only) & carbachol (M+N).
- Alkaloid:pilocarpine( M only).
- 2- Indirect parasympathomimetics:
- -Reversible:physostigmine(eserine) & demecarium.
- -Irreversible :organophosphorus→ecothiophate&isoflurophate: Long-lasting strong effect with extreme miosis, but produce irritation &catarac<sup>+</sup>

#### Therapeutic uses:

1-Glaucoma.

- 2-Counteract mydriatics after fundus examination.
- 3-Alternatively with mydriatics to cut adhesion between iris & lens.







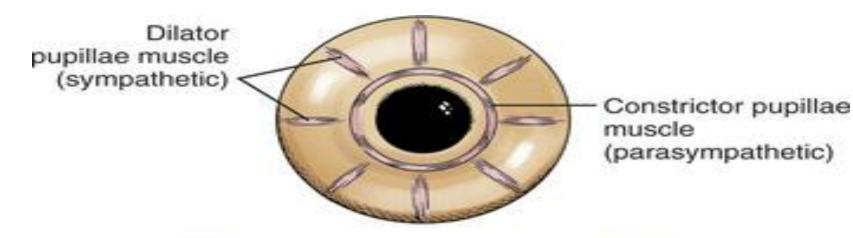
#### **Guanthidine:**

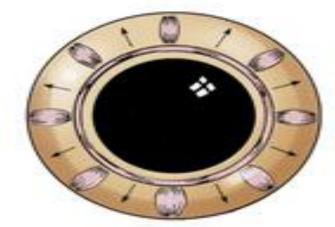
Paralysis of Dilator Pupillae Muscle  $\rightarrow$  miosis +  $\downarrow \downarrow \downarrow$  IOP

Relaxation of levator palpebrae superiosis  $\rightarrow \downarrow \downarrow \downarrow$  exophthalmos of hyperthyroidism.

<u>Morphine</u> stimulates opiate receptor in 3rd cranial nerve nucleus  $\rightarrow$  stimulates

oculomotor nerve  $\rightarrow$  ciliary ganglia (Nn)  $\rightarrow$  eye  $\rightarrow$  ACh  $\rightarrow$  stimulates M3 receptors of


**CPM**  $\rightarrow$  marked **miosis** (pin point pupil).


**Pin-point pupil of morphine can be antagonized by:** 

- **1)** Systemic naloxone  $\rightarrow$  block opiate  $\mu$  receptors in CNS.
- 2) Systemic ganglion blocker  $\rightarrow$  block Nn of ciliary ganglia.
- 3) Topical or systemic atropine  $\rightarrow$  block M3 receptors on CPM

### **2- Mydriatics drugs**

| Drug Class                       | Examples                              | Effect on Pupil   | Mechanism                                                                       |
|----------------------------------|---------------------------------------|-------------------|---------------------------------------------------------------------------------|
| Sympathomimetics (<br>indirect). | Epinephrine, Cocaine,<br>Amphetamines | Mydriasis         | Stimulates adrenergic<br>receptors, enhancing<br>sympathetic activity           |
| Anticholinergics                 | Atropine, Tropicamide,<br>Scopolamine | Passive Mydriasis | Blocks parasympathetic innervation to the constrictor pupille muscle.           |
| α1-Adrenergic Agonist            | Phenylephrine                         | Mydriasis         | Stimulates dilator muscle via<br>α1 receptors.                                  |
| SSRIs & SNRIs                    | Fluoxetine, Venlafaxine               | Mydriasis         | Increased serotonin activity affects autonomic control                          |
| Tricyclic Antidepressants        | Amitriptyline,<br>Imipramine          | Mydriasis         | Strong anticholinergic<br>effects block pupil<br>constriction.                  |
| Hallucinogens                    | LSD, MDMA                             | Mydriasis         | Serotonin and dopamine<br>effects increase sympathetic<br>tone                  |
| Dopaminergic Drugs               | Levodopa,<br>Bromocriptine            | Mydriasis         | Enhances dopamine<br>signaling, indirectly<br>increasing sympathetic<br>effects |





DILATION (mydriasis) Dilators contract Constrictors relax



CONSTRICTION (miosis) Constrictors contract Dilators relax

#### A Sympathomemetic:

- **mechanism:** Stimulate **α1 receptors** leading to:
- Contraction of **DPM**  $\rightarrow$  **Active mydriasis** (intact light reflex) & no cycloplegia, BV  $\rightarrow$  VC  $\rightarrow$  decongestion &  $\downarrow$  IOP.
- **Examples:** Direct: phenylephrine., Indirect: amphetamine, Mixed: ephedrine.
- •**Therapeutic uses:** fundus examination especially in elderly patients liable for glaucoma.

#### **B- Cocaine:**

- □Surface anesthesia  $\rightarrow$  loss of sensory reflex (corneal & conjunctival reflex)
- □Indirect sympathomimetic:  $\downarrow$  neuronal uptake (1) + MAO inhibitor →  $\uparrow$  endogenous NA → stimulates  $\alpha 1$  receptors → active mydriasis & decongestion.

#### C)Parasympatholytics:

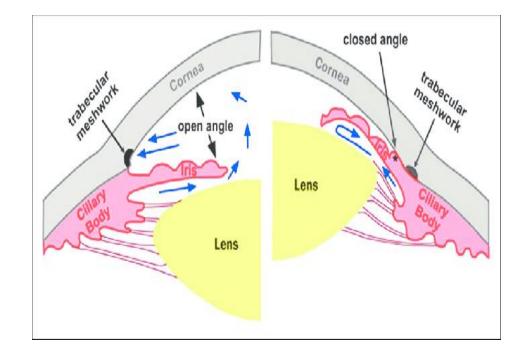
#### Mechanism: Block M3 receptors in:

- 1) **CPM**  $\rightarrow$  passive mydriasis  $\rightarrow$  lost light reflex & narrow angle of filtration.
- Ciliary muscle → cycloplegia (loss of accommodation) + closing canal of Schlemm.
- Result is **lost light reflex** + **cycloplegia** +  $\uparrow\uparrow$  **IOP. Examples**:
- **1)** Natural belladona alkaloids: atropine & hyoscine.
- 2) Synthetic: homatropine, cyclopentolate , tropicamide & eucatropine.

#### **• Therapeutic uses:**

- Atropine is used in iritis and corneal ulcer (to prevent adhesions), and measurement of refraction in children.
- 2) Synthetic substitutes: in fundus examination.

## **Treatment of Glaucoma** Normal Intra-Ocular Pressure (IOP) = 15-25 mmHg.


#### Glucoma may be :

1) Closed angle (narrow-

angle) glaucoma

2) Open-angle glaucoma

(Chronic glaucoma)



## I- Closed angle (narrow-angle) glaucoma:

- □Needs **surgical intervention** (iridectomy).
- Due to occlusion of angle of filtration by iris root coming in contact with periphery of the cornea (Acute congestive glaucoma).
- **Drugs used to decrease I.O.P before surgery are:**
- Miotic eye drops: a)Pilocarpine (of choice) with low concentration.
  b)Physostigmine (not perfered due to congestion & extreme miosis).
- 2) Carbonic anhydrase inhibitors: acetazolamide (\U aqueous secretion)
- 3) 3- Osmotic agents (dehydrating agent): mannitol (20%) IV, MgSO4 rectallly & Glycerine (50%) orally: they produce rapid reduction of IOP.
- 4) 4- Brimonidine & apraclonidine ( $\alpha 2$  agonists).

5)

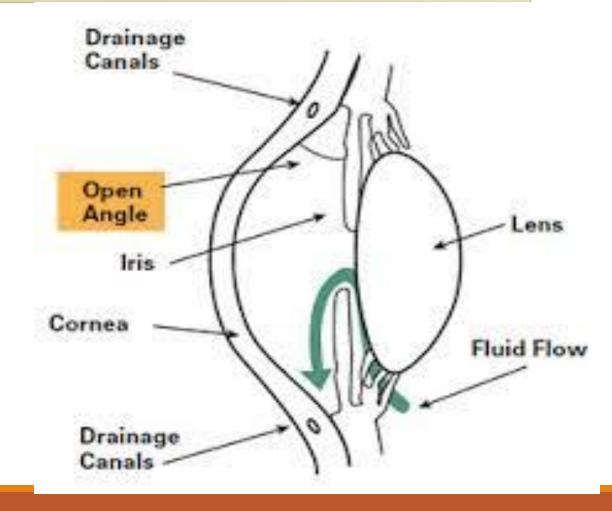
5- Recently  $\beta$ -Blockers can be used with pilocarpine

# II- Open-angle glaucoma (Chronic glaucoma):

## Drugs used are:

#### 1) Miotic eye drops

(Pilocarpine & Physostigmine).


#### 1) Carbonic anhydrase inhibitors:

(inhibit aqueous formation):

a- Acetazolamide orally

b- Dorzolamide & Brinzolamide

(locally)



- **3- Sympathomimetic eye drops:** (Adrenaline & Dipivefrin)  $\rightarrow$  VC  $\rightarrow$  decrease synthesis of aqueous humor.
- **4- B-blockers:** decrease cAMP → decrease aqueous humor e.g. timolol & betaxolol.Side effects: tolerance, systemic absorption.
- 5)α2 agonists: a-Apraclonidine: used only for short time due to tachyphylaxis. b-Brimonidine: decrease aqueous secretion & 个 uveoscleral outflow.
- Side effects: allergic conjuncitivitis, dry mouth & fatigue.
- **6)PGF2α analogues** e.g. Latanoprost, trovaprost & bimatoprost:
- They decrease IOP by  $\uparrow \uparrow$  uveoscleral outflow.
- The most potent ocular hypotensives.
- Side effects: conjunctival hyperpigmentation & hyperemia, and headache.
- 7)Guanethidine

# Drugs that 个个 IOP:

- **1. Parasympatholytics** (atropine).
- **2.** Drugs with atropine-like effect:

a)Some H1 blockers (Diphenhydramine). (Disopyramide).

- **1.** Ganglion blockers.
- 2. Corticosteroids.
- **3.** Nitrates.

b)Some antiarrhythmics

# Thank you