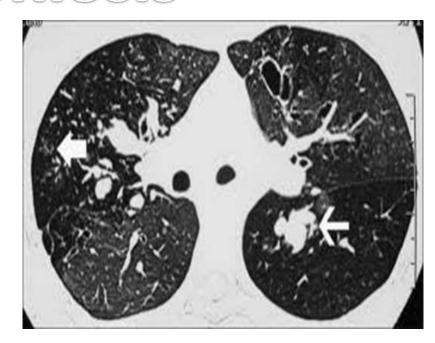
OCCUPATIONAL HEALTH VII

Chemical Hazards


APRIL 2025

PROF. DR. WAQAR AL-KUBAISY

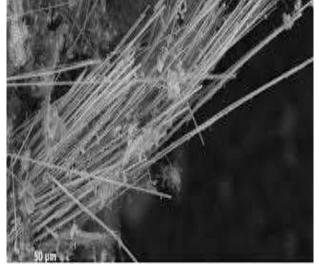
Pneumoconiosis

contents

- Definitions
- Pathogenesis
- Types
- Individual diseases
- -Silicosis
- -Asbestosis
- Anthracosis

• Preventive measures

Asbestosis & Anthracosis


Asbestos Diseases 2

Asbestosis

- Scarring of lung tissue reducing ability to take oxygen.
- Dose related disease repeated regular exposures.
- Debilitating disease and can be fatal.
- Latency period 10-20 years

Asbestos fibers

Securi STM of Automotor

AMERICAS Para para para la logado de la constancia de logado de la constancia del la constancia de la const

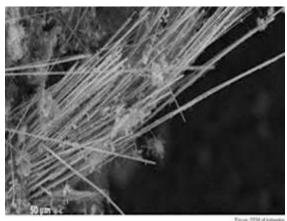
ASBESTOSIS

• Asbestosis is diffuse interstitial pulmonary fibrosis that occurs secondary to the inhalation of asbestos fibbers.

Asbestos

is the commercial name given to certain types of fibrous materials.

Asbestos is a naturally occurring fibrous silicate mineral They are silicates of varying composition;


the silica is **combined** with **such bases** as **magnesium**, **iron**, **calcium**, **sodium** and aluminium.

Formed of fibrous magnesium silicate.

Asbestos fibers

- Asbestos Posses thermal, noise, water and chemical resistance,
- Mexible and high tensile strength

- Asbestos Posses
- thermal, noise, water and chemical resistance,
- * flexible and high tensile strength
- Asbestos fibres are usually from 20 to 500 μ in length and 0.5 to 50μ in diameter.

- Uses:
- Due to its physical properties, it is used in manufacture of:
- fire proof textile,
- wire insulation,
- friction materials (break lining),
- roofing and floor products,
- ship construction and
- paints.

Asbestos is used

- in the manufacture of asbestos cement,
- brake lining بطانة الفرامل,
- gaskets and
- several other items.

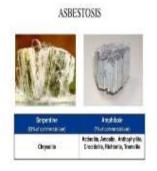
Asbestos fibers

- Asbestos is classified into two groups:
- Serpentine (93% of commercial use) which is hydrated magnesium silicate
 - Chrysotile fibers have curved appearance (white asbestos).
- Amphibole. (7% of commercial use) contains little magnesium. chain silicate with straight line, This type occurs in different varieties, e.g.
- Chrysolite Actinolite, Amosite (brown asbestos), Anthophyllite,
 Crocidolite (blue asbestos), Richterite, TremRichterite,

Tremolite

Serpentine	Amphibole	
(93% of commercial use)	(7% of commercial use)	
Chrysolite	Actinolite, Amosite, Anthophyllite, Crocidolite, Richterite, Tremolite	

ASBESTOSIS


Serpentine	Amphibole	
(93% of commercial use)	(7% of commercial use)	
Chrysolite	Actinolite, Amosite, Anthophyllite, Crocidolite, Richterite, Tremolite	

ASBESTOSIS

☐ Types of exposures:

1) Direct:

primary → miners and millers
Secondary → manufacturing plants

2) Indirect:

bystander (observer) exposure تعرض المتفرجين and household contact

☐ At risk groups:

- plumbers, السباكين،
- •insulation workers، عمال العزل,
- •carpenters، انجارين,
- •welders (الحام
- Miners and millers of asbestos.
- ☐ Prevalence increase with length of employment (dose response)
- Smokers and x smokers carry greater risk and higher mortality

Cont. .. ASBESTOSIS

- Asbestos enters the body by inhalation, and the fine dust may be deposited in the alveoli.
- The fibbers are **insoluble**.
- The dust deposited in the lungs causes pulmonary fibrosis
- leading to respiratory insufficiency and death;
- **The fibrosis in asbestosis** is due to **mechanical irritation**, and is
- ribronchial, diffuse in character, and basal in location interstitium (peribronchial, diffuse and basal fibrosis).
- in contrast to silicosis in which the fibrosis is nodular in character and present in the upper part of the lungs.
- The **lung architecture** is changed leading to **honeycomb** changes and intense **peribronchial cellular reaction** may cause
- > narrowing or obstruction of airway lumen.

Asbestosis

- Scarring of lung
- ability to take oxygen

 Dose related disease repeated regular
 - ebilitating disease d can be fatal.

- Average latency period is 20-30 years
- Carcinoma of the bronchus;
- ☐ The risk of bronchial cancer is reported to be high if occupational exposure to asbestos is combined with cigarette smoking
- mesothelioma of the pleura or peritoneum;
- ➤ <u>In Great Britain</u>, an association was reported between mesothelioma and living within 1 km of an asbestos factory
- ☐ Mesothelioma, a rare form of cancer of the pleura and peritoneum,
- has been shown to have a strong association with the crocidolite (blue asbestos) variety of asbestos.
- The disease does not usually appear until **after 5 to 10 years** of exposure and
- ☐ Gancer of the gastro-intestinal tract.

Cont. .. ASBESTOSIS

- ☐ Clinically the disease is characterized by
- Dyspnoea gradually increases
- Cough Chest pain
- > Bilateral late inspiratory crepitation on posterior Lung bases
- * In advanced cases, there may be
- Clubbing of fingers,
- cardiac distress and
- cyanosis.
- ☐ The sputum shows "asbestos bodies" which are asbestos fibres coated with fibrin
- **Lung function change:**
- Restrictive impairment with \$\pm\$ lung volumes (FVC, TLC) FEV1/FVC ratio is usually preserved.
- **X**-ray picture:

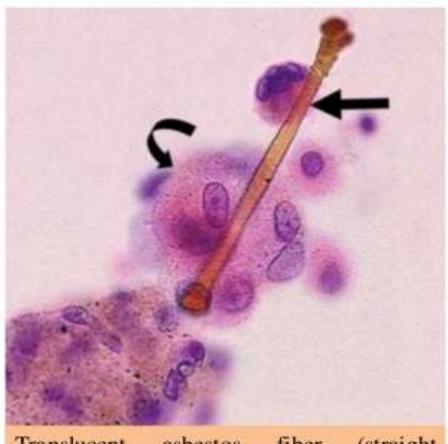
Bilateral diffuse nodular & or irregular oval opacities

Bilateral diffuse nodular & or irregular oval opacities predominant in lower lung zones, Interstitial fibrosis and "Shaggy heart sign

At histopathologic analysis,
asbestos bodies, which may consist of a single asbestos fibre
surrounded by a segmented protein-iron coat, can be
identified in intraalveolar macrophages

Diagnosis:

- 1- History of exposure: exposure over (10-20) years is usually necessary.
- 2- Clinical picture: particularly dyspnea and clubbing of fingers.
- 3- X-ray picture: irregular basal opacities (ground glass).
- 4- Pulmonary function: restrictive abnormality.
- 5- Broncho-alveolar lavage (BAL): Contain Asbestos bodies


D.D:

ASBESTOSIS

Translucent asbestos fiber (straight arrow) surrounded by a protein-iron coat and an alveolar macrophage (curved arrow)

Chest x-ray showing Small, irregular oval opacities Interstitial fibrosis and "Shaggy heart sign"

☐ D.D:

- Idiopathic pulmonary fibrosis (I.P.F): the patient **is younger**, clinically and physiological impairment is **more sever** and progress **rapidly.**
- (pseudo asbestos bodies) such as silica, kaolinite, silicates or manmade mineral fibers. They contain no asbestos core.

☐ Treatment Strategy:

- Once established, the disease is progressive even after removal of the worker from contact
- > Stopping additional exposure
- > Careful monitoring to facilitate early diagnosis
- > Smoking cessation
- > Regular influenza and pneumococcal vaccines
- Disability assessment
- > Pulmonary rehabilitation as needed
- Aggressive treatment of respiratory infections
- > Health education to patient

Control Measures Of Asbestos

- PEL 0.1 fiber/CM³ (TWA8). Permissible Exposure Limit (PEL) for asbestos is 0.1 fiber per cubic centimeter of air as an **eight-hour time-weighted average** (TWA),
- * Switch to alternate material, man-made fibers (MMF) are considered . Man-made vitreous fibers الألياف الزجاجية , MMVF (MM mineral fibers):
- Constitute 3 main species:
- a. Glass fibers (glass wool, continuous glass filaments)
- b. Mineral wool (rock wool and slag wool)
- c. Ceramic fiber.
- They used as a substitute for asbestos since the latter were banned due to its bad health effects.
- They posses high tensile strength, perfect elasticity, thermal and electrical properties and moist and corrosion resistance.
- They have a toxic effect on peritoneal and pulmonary macrophages and structure chromosome alteration in mammalian cells.
- TWA8 should keep below 1 fiber /CM³ as asbestos.
- Engineering controls include enclosure, increased ventilation,
- wet manufacturing.

- Engineering controls include enclosure, increased ventilation,
- wet manufacturing.
- Use of personal respirators.
- Stop tobacco smoking

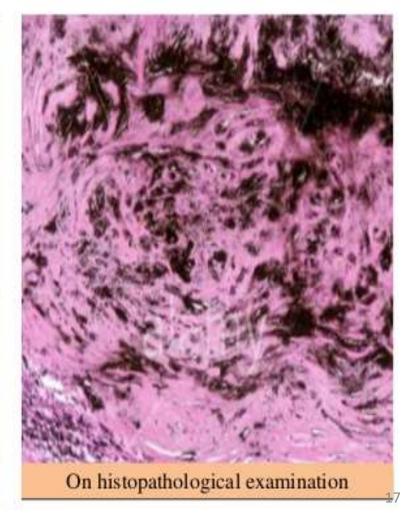
Significant occupational exposure to asbestos occurs mainly in

- Asbestos cement factories
- Asbestos textile industry and
- Asbestos mining and milling.

ASBESTOSIS

- Significant occupational exposure to asbestos occurs mainly in
 - Asbestos cement factories
 - Asbestos textile industry and
 - Asbestos mining and milling.





Cut section of lungs in anthracosis On histopathological examination

Anthracosis

Cut section of lungs in anthracosis

Anthracosis

Anthracosis:

Coal Worker's Pneumoconiosis (CWP) / Black lung disease:

- Accumulation of coal dust in the lungs and the tissue's reaction to its presence.
- > Associated with coal mining industry
- Takes one or two decades to cause symptoms
- The disease is divided into 2 categories:
- I. Simple CWP and
- II. Complicated CWP or Progressive Massive Fibrosis (PMF).
- I. Simple Coal Worker's Pneumoconiosis:
- > the presence of radiological opacities < 1cm in diameter.
- **Benign disease** if no complications.
- is associated with little respiratory impairment.
- This phase may require about 12 years of work exposure for its development

- ☐ I Common symptoms:
- > cough,
- > expectoration (black in colour) and
- > dyspnea.
- > Slight decrease in FVC and FEV1/FVC
- ❖ Once a background of simple pneumoconiosis has been attained in the coal worker, a progressive massive fibrosis may develop out of it without further exposure to it.
- * From the epidemiology point of view
- * the risk of death among coal miners has been nearly twice that of the general population.
- II. Complicated Coal Worker's Pneumoconiosis or Progressive Massive Fibrosis (PMF).

II. Complicated Coal Worker's Pneumoconiosis or Cont. .. Anthracosis

Progressive Massive Fibrosis (PMF).

- ❖ Is diagnosed when large opacity of 1cm or more in diameter is observed in the CXR
- ☐ Pathologically it is characterized by large masses of black colour fibrous tissue.
- ☐ Symptoms are similar but more severe
- The large lesions may cavitate as a result of ischemic necrosis or infection (T.B).
- * Recurrent pulmonary infection
- ❖ PFT (Pulmonary function test) reveals decreased FVC, FEV1/FVC and increased residual volume.
- ☐ The Second phase is characterised by
- * progressive massive fibrosis (PMF) this causes
- severe respiratory disability and frequently results in
- premature death

Cont. ... Complicated CWP

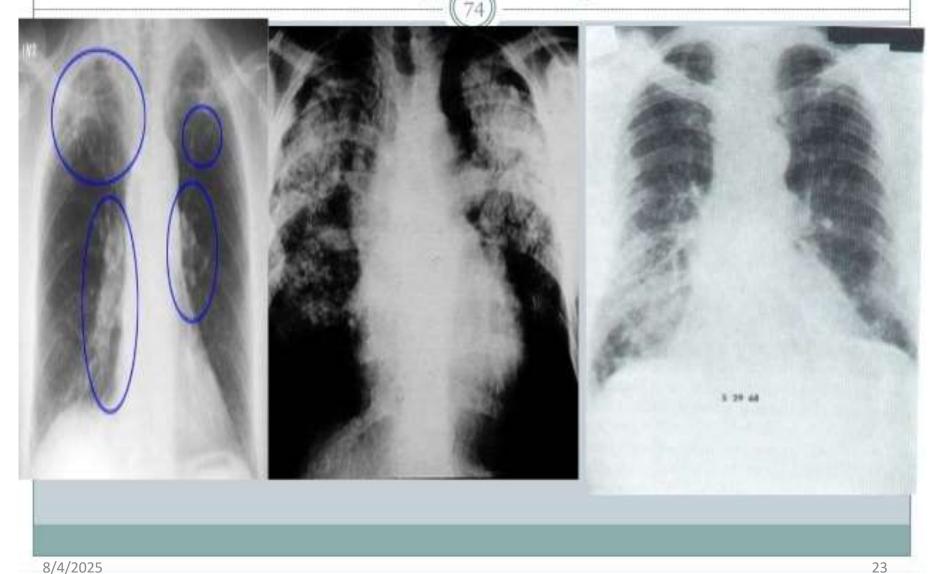
- ☐ Special type of PMF associated with rheumatoid disease (rheumatoid pneumoconiosis or Caplan syndrome) occur and is characterized by:
- □ typically smooth rounded nodule 1-5 cm in diameter with concentric internal lamination and relatively little coal dust compared with other PMF lesions.
- * Pulmonary function changes: obstructive or mixed lesion.
- decrease in FEV 1 and FEV1/FVC ratio
- **X**-ray picture:
- **Simple CWP**
- > frequently mixed nodular and irregular and
- > occasionally exclusively irregular opacities was noted
- First in upper and middle lung zone.
- irregular opacities raises the possibility of previous exposure to asbestos.

 PMF appear radiologically

Cont. .. Anthracosis

- * PMF appear radiologically as:
- > nodular opacity 1cm or larger
- > usually found posteriorly in upper lung zone.

■ D.D of small opacities in x-ray picture includes:


Miliary T.B and viral pneumonia

Other pneumoconiosis, metastatic carcinoma, chronic T.B

- * PMF should be differentiated from malignancy,
- * Diagnosis and clinical assessment:
- > History of present and past exposure.
- Look for previous chest X- ray and lung function tests.
- S. & S. including cough, sputum, dyspnea or cardiovascular symptoms
- Treatment and clinical care:

Symptomatic, for dyspnea, ch. bronchitis and congestive H.F

Silicosis, Anthracosis & asbestosis X-ray findings

Caplan's syndrome (Caplan disease or (Rheumatoid pneumoconiosis)

- ☐ is a combination of rheumatoid arthritis (RA) & pneumoconiosis
- manifests as intrapulmonary nodules,
- which appear homogenous and well-defined on chest X ray
- The nodules in the lung typically occur bilaterally and peripherally, on a background of simple coal worker's pneumoconiosis
- There are usually multiple nodules, varying in size from 0.5 to 5.0 cm.
- The nodules typically appear rapidly, often in only a few weeks.
- Nodules may grow, remain unchanged in size,
- resolve, or disappear and then reappear.

Cont. ... Caplan's syndrome

- They can cavitate, calcify, or develop air-fluid levels
- *Caplan syndrome occurs only in patients with both RA and pneumoconiosis related to mining dust (coal, asbestos, silica).
- . There is probably also a genetic predisposition, and
- smoking is thought to be an aggravating factor

Comparative features of different types

Features	Silicosis	Asbestosis	Anthracosis
1. Agent/ dust	•Silica free or silicon dioxid or silicic acid •Particles are 0.5 - 3 μ are most dangerous.	 Asbestos fibres Serpentine or chrysolite (safer) Amphibole Crocidolite (blue) Amosite (brown, safer) Anthrophylite (white) 20-500μ in length and 0.5-50 μ in diameter 	• Coal dust

Comparative features of different types

Features	Silicosis	Asbestosis	Anthracosis
Occupational exposure	Mining, pottery, ceramic, sand blasting, metal grinding, building & construction work, rock mining, iron & steel industry.	Manufacturers of Asbestos cement, fire proof textiles, roof tiling, brake lining & gaskets.	Coal miners, coal processors & coal handlers and those manufacturing carbon electrodes.
Incubation period	6 months to 6 years		12 years

Comparative features of different types

Features	Silicosis	Asbestosis	Anthracosis
Pathogenesis	Fibrosis is initiated by silicic acid leading to nodular fibrosis, emphysema, and right heart failure. Pulmonary tuberculosis may intervene in 50% of cases. Fibrosis is nodular and in upper part of lung.	Asbestos fibers initiate fibrosis of pulmonary tissue, emphysema and its associated complications. Fibrosis is due to mechanical irritation, it is peri-bronchial, diffuse and basal in location	•Coal dust initiates diffuse and massive fibrosis a. Simple pneumoconiosis with ventilator impairment. b. Progressive massive fibrosis leading to emphysema an right heart fails
Clinico-Pathologic features	Irritant cough, dyspnea on exertion & pain in chest. Dense nodular fibrosis 3-4 mm nodules. X-ray shows "snow- storm" appearence	Dyspnea out of proportion, clubbing, cyanosis, cardiac distress. Sputum shows "asbestos bodies". X-ray shows ground glass appearance.	•From little ventilatory impairment to severespiratory disabil leading to pre-mat death.

Control of pneumoconiosis

- Rigorous dust control measures
 - Substitution, enclosure, isolation, hydroblasting, good house keeping, personal protective measures
 - Regular physical examination of workers.
- Periodic examination of workers, biological monitoring (X-ray & Lung function)
- Personal protection
 - Masks, respirators with mechanical filters
- Regulated exposure
- Health education

Chemical hazards Occupational exposure to Toxic Metals

"heavy metals"

LEAD POISONING

PROF DR. WAQAR AL - KUBAISY