AKI management: hyperkalaemia

In excitable tissues, \uparrow $K^+ \rightarrow$ depolarization of the membrane resting potential \rightarrow Na^+ channel inactivation $\rightarrow \downarrow$ membrane excitability \rightarrow neuromuscular depression and cardiac dysrhythmias.

What represents a dangerous † K*?

- Chronically hyperkalaemic patients may tolerate ↑ K⁺ of 6.0–7.0mmol/L (► but treat if >6.5mmol/L).
- ▲ However, an acute ↑ K⁺ in AKI is much less likely to be tolerated, particularly if: (i) elderly; (ii) associated cardiac disease (esp. arrhythmias); (iii) oliguria (cannot excrete ↑ K⁺).
- Closely monitor (→ cardiac monitor, repeat serum K⁺ 2–4-hourly) all
 patients with † K⁺ acutely >6.0mmol/L, and commence treatment to
 enhance K⁺ wasting.
- ► Treat to urgently lower serum K⁺ if ≥6.5mmol/L.

 \triangle Although U&E are often repeated to exclude haemolysis or artefact, this should cause delays \rightarrow put on a cardiac monitor, and start treatment.

>> Treatment of dangerous hyperkalaemia

The following \downarrow serum K^+ acutely but DO NOT \downarrow overall elevated total body K⁺. Additional measures, described on □ pp. 132–133, are ∴ also required.

Calcium

- If K⁺ ≥6.5mmol/L or ECG changes.
- ► Ca²⁺ is cardioprotective—it does not ↓ K⁺.
- Antagonizes membrane K⁺ effects by poorly understood mechanisms.
 - 10mL 10% calcium gluconate (usually 1 ampoule—calcium gluconate contains 220µmol Ca²⁺/mL), or
 - 5mL 10% calcium chloride (usually half an ampoule—CaCl, contains 680µmol Ca²⁺/mL).
- Give over 2–5min. Repeat if no ECG improvement after 5min (up to 40mL calcium gluconate).
- Acts within minutes, but protective effect lasts <1h.
- ⚠ Can induce digitalis toxicity (→ a pragmatic approach: halve the initial dose, and give more slowly if taking digoxin).

Insulin and glucose

- If $K^+ \ge 6.5$ mmol/L or ECG changes.
- Insulin binds to its cellular receptor and † Na-K-ATPase activity, moving K⁺ into cells. Glucose alone will ↓ K⁺ through endogenous
- insulin release, but insulin/glucose is more effective.

 10–15IU of soluble insulin (e.g. Actrapid®) in 50mL of 50% glucose IVI over 10min (alternative: $51\dot{U}$ of soluble insulin in 50mL 20% glucose over 15min by syringe pump and repeated).
- 50% glucose is extremely viscous and irritant. Find a large vein, and flush with saline afterwards.
- Effect within 15–30min (peak ~60min), lasts for 2–4h. Expect a ↓ of 0.5-1.5mmol/L. Can be repeated after 4h.
- Check BMs regularly for 6h, and infuse 10% glucose IVI if ↓ glucose.

Sodium bicarbonate

- If ↑ K⁺ in the presence of acidosis (HCO₃ <16) and volume depletion.
 ↑ Na⁺/H⁺ exchange →↑ intracellular Na⁺→↑ Na-K-ATPase activity (i.e. K^+ in for Na^+ out). Additional pH-independent mechanisms operate.
- 1.26% or 1.4% solutions as 200–500mL over 15–60min IVI.
- In cardiac arrest: 50mL of 8.4% (1 ampoule) IVI.
- <u>A CAUTION</u>: do not infuse bicarbonate solutions into the same cannula as calcium gluconate/carbonate unless thoroughly flushed.
- Action within hours, not minutes.
- Rapid correction of acidosis in a patient with $\downarrow \acute{C}a^{2+}$ may induce tetany and seizures, as ionized calcium drops rapidly as pH 1.

β2-agonists (salbutamol, etc.)

- 10–20mg (i.e. a large dose) of nebulized salbutamol will ↓ K+ by up to 1mmol/L but has limited additive benefit beyond insulin/glucose (it acts via the same Na-K-ATPase and has a slower onset of action).
- ullet It may also precipitate angina or arrhythmias in those with underlying cardiac disease and can cause an increase in lactate acid (→ worsening acidosis).

Once (if) the immediate arrhythmic danger is past, the aim should be to reduce total body potassium to prevent further hyperkalaemic episodes.

Urinary K* wasting: diuretics

- Only useful in patients expected to pass urine and :. urine into which K⁺ can be excreted. Particularly useful if coexisting volume overload.
- Act on the renal tubule—K⁺ loss as one of several effects.
- Furosemide 40–120mg IVI as a slow bolus or 10–40mg/h to a maximum of 1000mg/day. Bumetanide offers a better absorbed oral alternative.
- Effect depends on onset of diuresis. Can lose substantial amounts of K+ over 24h, with a UO >2L/day.
- Much less effective, as GFR deteriorates.

Gut K⁺ wasting: cation exchange resins

- Overused, particularly orally. • Exchange Na^+/Ca^{2^+} for K^+ in the gut so actually removes K^+ , rather than just redistributing it.
- Calcium polystyrene sulfonate (CPS) (Calcium Resonium®) or sodium polystyrene sulphonate (SPS) (Resonium A® or Kayexalate®). Can give 15g orally (supplied as a powder to be suspended in water) up to qds or 15-30g suspended in 2% methylcellulose and 100mL water rectally up to qds, retained for at least 2 (preferably >4) hours. May require saline irrigation through a catheter to remove the resin from the colon.
- Rectal route is more effective, as there is more K⁺ available for exchange: colonic $[K^+]$ = 60–90mmol/L, whereas upper GI tract = 5–10mmol/L.
- The constipating effect of these agents given orally may paradoxically prevent K+ losses in the stool—equally, the laxatives (e.g. lactulose 10–20mL tds) given with these agents may be more efficacious than the agent itself!
- Modest effect seen within 24–48h.
- May cause colonic ulceration and necrosis (recognized with SPS when given with sorbitol as a hyperosmotic laxative—previously a common practice in the USA. Post-op patients with an ileus are at highest risk).

Extracorporeal K⁺ wasting: dialysis

- \bullet Consider if K^+ >6.0mmol/L, or rapidly rising, and renal function cannot be restored quickly.
- Lowers K⁺ within minutes.
- Haemodialysis (HD) can process 20–60L of blood against a dialysate K^+ of 1–2mmol/L and is \therefore a potent means of removing K^+
- Haemofiltration (p. 174), with returned infusate free of K⁺, can achieve much the same thing although much slower.
- Peritoneal dialysis is effective but rarely indicated acutely (p. 188).
- Requires dialysis access and transfer to a dialysing facility (which potentially introduces delays).
- A Never transfer a dangerously hyperkalaemic patient—if they are not responding to emergency measures, speak to your ITU (p. 123).

Further management

The aim is to prevent further dangerous rises.

- Restrict oral K⁺ intake to <2g per day. ► Speak to your dietetic staff (□ p. 258). △ K⁺ content of enteral and parenteral feeds may need modification.
- ▲ No K⁺ in IV fluids.
- Avoid K⁺-sparing diuretics, ACE-I, ARB, spironolactone, and NSAIDs.
- ▶ Refractory ↑ K⁺ is an indication for dialysis.
- If † K⁺ persists, despite dialysis, then:
 - Review dietary intake and compliance.
 - Triple-check the drug chart.
 - Check for GI or occult bleeding (reabsorbed red cells are rich in K+).
 - Exclude concealed tissue or muscle damage (e.g. compartment syndrome).
 - Review (and consider changing) dialysis access and dialysis adequacy (\square p. 181). Check dialysate K⁺ concentration (\square p. 179).

Blood transfusion

 \triangle Caution is needed when administering a blood transfusion to a patient with AKI, particularly if oligo-anuric. The volume and K⁺ content of red cell transfusions can precipitate pulmonary oedema and hyperkalaemia, respectively. If the patient requires renal support, then transfusions are safest given during dialysis treatment (► seek expert advice).