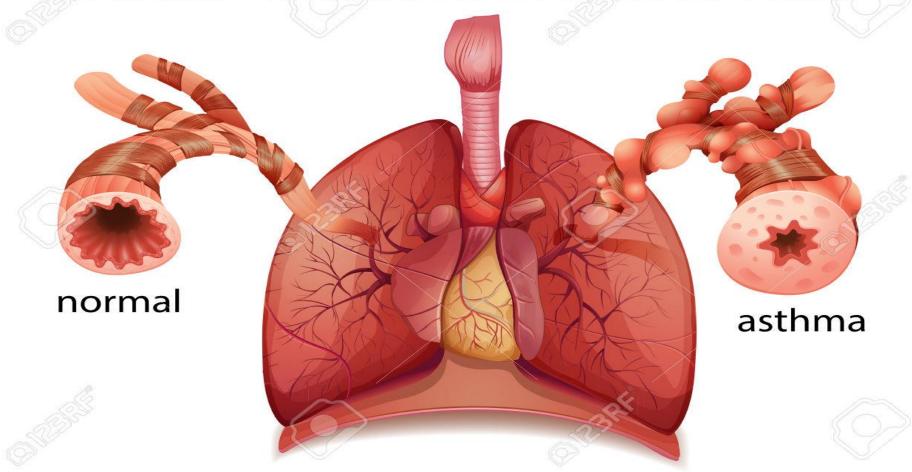


Bronchial Asthma

Dr.Samah M.Shehata

Associate Prof. of Chest Diseases

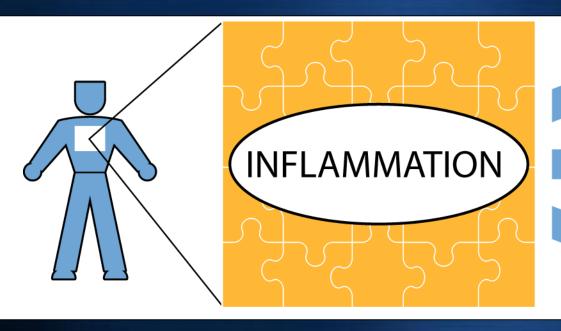


Our Goals

Definition of bronchial asthma **Etiologic factors** Immunology Pathophysiology Diagnosis Differential diagnosis Treatment guidelines

What is asthma?

Asthma - Inflamed Bronchial Tube


Asthma is a heterogeneous disease, usually characterized by chronic airway inflammation. It is defined by the history of respiratory symptoms such as wheeze, shortness of breath, chest tightness and cough that vary overtime and in intensity, together with variable expiratory airflow limitation.

Asthma Pathophysiology

Individual

Inflammation

Impact

Airway Obstruction

AHR / Bronchospasm

Airway Remodeling (?)

- Genetic predisposition
- Environmental triggers
- Inflammation underlies disease processes

Clinical symptoms also vary by individual and over time

 chronic inflammatory disorder of the airways in which many cells and cellular elements play a role, in particular,

- -mast cells,
- -eosinophils,
- -T lymphocytes,
- -macrophages,
- -neutrophils, and epithelial cells

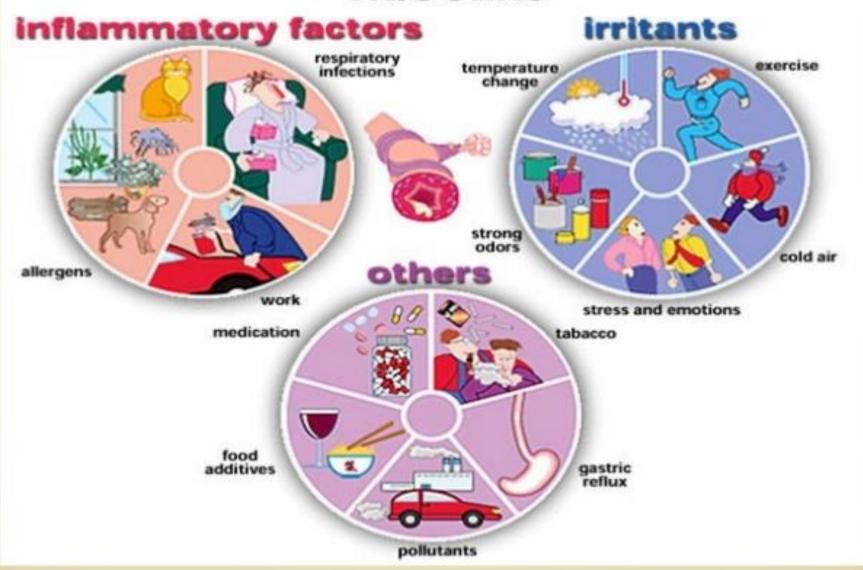
Airflow obstruction is often variable, reversible either spontaneously or with treatment and associated with recurrent episodes of wheezing, breathlessness, chest tightness, and coughing, particularly at night or in the early morning.

Bronchial hyperreactivity

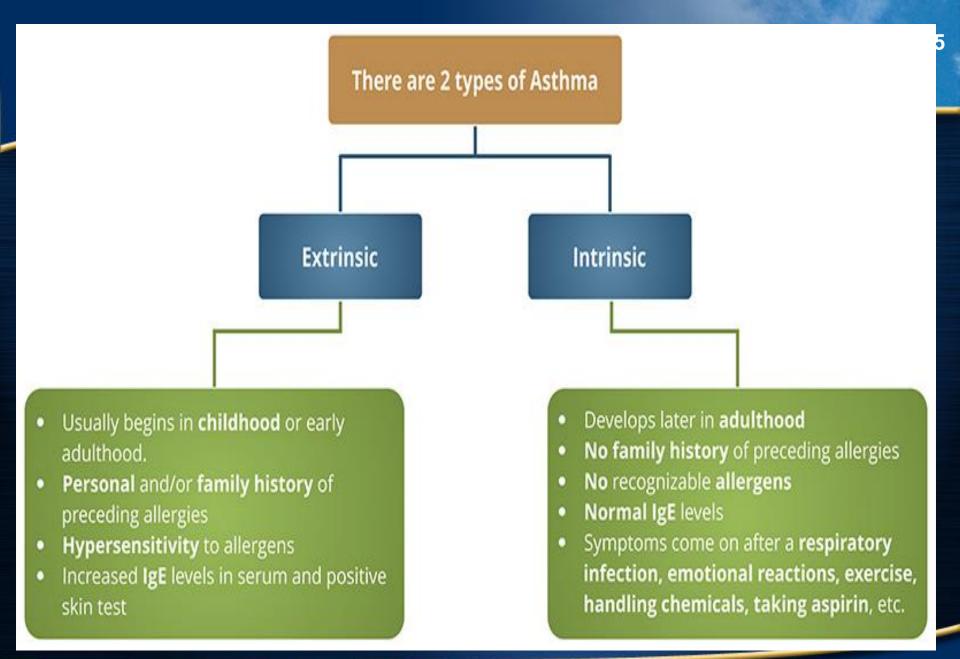
• exaggerated response of bronchial smooth muscle to trigger stimuli to physical, chemical, immunologic, and pharmacologic stimuli

Normal bronchiole

Asthmatic bronchiole


Asthma Etiology

- Asthma is a complex trait
 - -Heritable and environmental factors contribute to its pathogenesis


What are the Triggering Factors?

TRIGGERS

Types of asthma

Diagnosing Asthma

History

- Based on intermittent symptoms of wheezing, chest tightness, shortness of breath, and coughing
- May worsen seasonally-spring, fall
- May worsen with exercise
- Note any triggers
 - -cats, perfume, tobacco
- Family history

Symptoms

• Intermittent episodes of expiratory wheezing, coughing and dyspnea

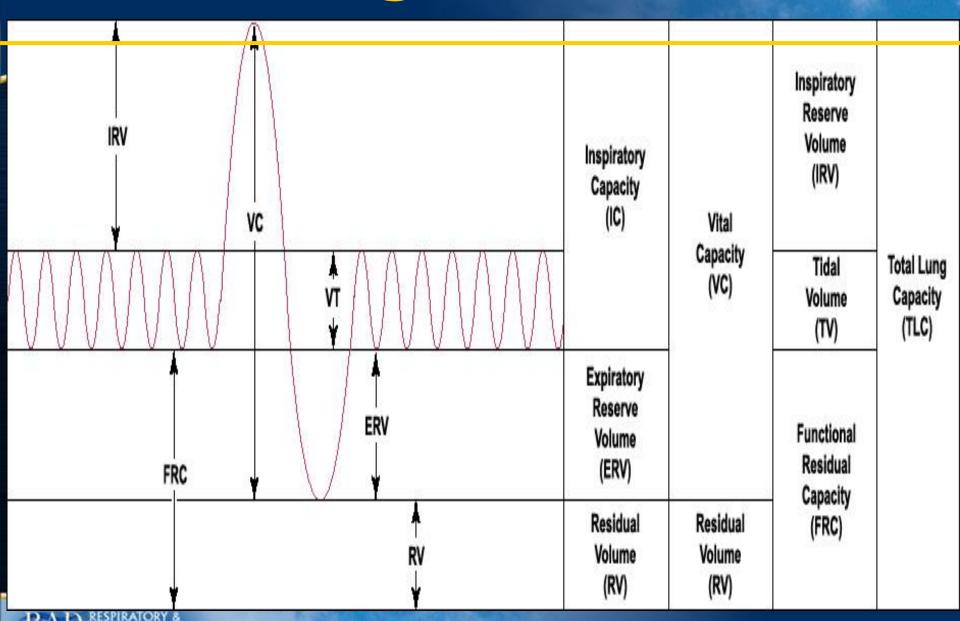
- Severity of disease
 - -occasional, mild bouts of breathlessness
 - -daily wheeze in spite of multiple medications
 - may be triggered by environmental factors (e.g. seasonal allergens)

Acute severe asthma

- •Tachycardia ≥ 110 beat/min
- •Tachypnea ≥ 25 breath/min
- Use of accessory muscles of respiration
- Anxiety, can not complete one sentence.
- •PEF ≤ 50%
- Bilateral generalised inspiratory and expiratory rhonchi
- Pulsus paradoxus

Life-threatening asthma

- Confusion
- Silent chest, cyanosis
- Bradycardia, hypotension
- Pao2<60 ,Paco2 ≥ 50
- PEF < 33%



Pulmonary function tests

Lung Volumes

Pulmonary Function Tests-Spirometry²⁴

• FEV1

—is that volume of air exhaled in 1 second

• FVC

-Forced vital capacity - volume of air exhaled with maximal forced effort

• FEV1:FVC ratio

-Most reproducible of the PFTs

- Healthy individuals can exhale 75-80% of VC in 1 second and almost all in 3 seconds
- -Normal ratio is 70%

e-hospital

Department of Pneumology

Dr. John Smith

Visit date 24/07/2003

Patient code Surname Name Date of birth Ethnic group Smoke

0 MARTINI DAVID 06/05/1975 Caucasian Smoker

Age Gender Height, cm Weight, kg

Pack-Year

28 Male 180 76

5

5,68

6,07

6,11

83,8

2,06

4,05

164,2

33

Patient group Interpretation

Normal Spirometry

FVC

PIF

ELA

EVC

ERV

MVV

IC

FEV1/VC

IVC

FEV1

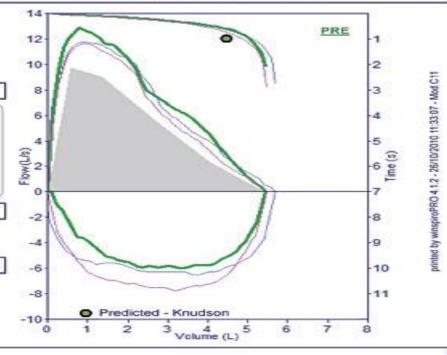
Conclusion / Medical report

PRE Trial date 24/07/2003 14:34:17

L/s

L

L


95

L

L

Years

L/min

Parameters	BTPS 1,092 25°C - 77°F	Pred	PRE	%Pred	POST	100
Best values from al	loops					

5,43

9.77

5,43

5,43

83,2

1,77

3.65

149.8

33

				200000000000000000000000000000000000000	- 1
FEV1/FVC	%	83,2	90,1	108	1
PEF	L/s	9,77	12,90	132	ı
Values from best I	оор				
FEF2575	L/s	4,71	7,33	156	Ī
FEF25	L/s	9,07	12,02	133	1
FEF50	L/s	5,56	7,21	130	1
FEF75	L/s	2,34	4,00	171	1
FEV3	L	5,04			1
FET	s	6,00	2,06	34	1
FIVC	L	5,43	5,41	100	1
FIV1	L	4,49	5,10	114	1
FIV1/FIVC	%	83,2	94,3	113	1

105	
114	
108	
132	
156	
133	
130	
171	
34	
100	
114	
113	
62	
113	
101	
116	
111	
110	

%Pred

%Chg

PRE#1	PRE#2	PRE#3
5,45	5,68	5,47
5,06	5,12	4,85
92,8	90,1	88,7
12,90	11,91	11,73
7,33	6,38	5,88
12,02	11,36	10,94
7,21	6,55	6,23
4,00	3,06	2,67
2,06	2,78	2,88
5,41	5,78	5,56
5,10	5,74	5,56
94,3	99,3	100,0
6,07	6,55	7,77
33	33	33
Qu	ality Report	D

County 1 cop out	
Repeatable FVC, Repeatable	
FEV1. Repeatable PEF	
Breathe out for a longer time,	
Breathe out ALL air in the lungs	

Sex: Male Ase: 72 Factor: 188(Caucasian)

Heisht: 163cm Weisht: 55kg BMI: 20.7

FEU1 FUC PEF Uar Quality Time: Date:

Base 1.21 2.90 161 0% Good blow 10:03 31-07-09

Base 1.20 2.83 178 0% Good blow 10:03 31-07-09

Base 1.06 2.72 195 -12%Good blow 10:03 31-07-09

Post 1 1.63 3.96 236 0% Good blow 10:28 31-07-09

Post 1 1.63 3.79 236 0% Good blow 10:28 31-07-09

Post 1 1.59 3.73 245 -2% Good blow 10:28 31-07-09

Variation is based on FEU1

. Best Spirometry Result:

			1 1	Horma:	1 1	F	osti	L	
	Base	%Pr	Min	Pred	Max	Post	%Pr	20ha	
EUC	2.95	89	2.36	3.28	4.28	2.94	129	34	1
FEV1	(1.21)	49	1.59	2.43	3.27	1.63	67	35	1
FUC	2.98	91	2.18	3.18	4.18	3.98	124	37	1
PEF	161	37	394	424	543	236	55	47	1/10
FEU1/UC	41.0					41.4		1	%
FEV1/FUC	41.7	56	62.5	74.3	88.1	41.2	55	-1	2
MEF75	1.11	17	3.53	6.34	9.15	1.41	22	- 27	1/5
MEF50	0.42	11	.1.43	3.60	5.77	0.60	16	43	1/5
MEF25	0.14	13		1.04	2.32	0.21	' 28	58	1/5
T	10.9					11.6		6	5
Ino Oca:	196								

Interpretation(NICE): Moderate Obstruct asiblee))

Peak Expiratory Flow (PEF)

Maximal rate of flow that can be produced during forced expiration

• Useful in ED, at home, at clinic

- Changes in PF usually correlate with change in FEV1
 - However, PEF is less reproducible than FEV1
- Healthy young adult has PEF 60L/min

Peak Expiratory Flow (PEF) Meters

- Allows patient to assess status of his/her asthma
- Persons who use peak flow meters should do so frequently
- Many physicians require for all severe patients

Reversible Airway Obstruction

- FEV1 is gold standard for determining reversibility of airway disease and bronchodilator efficacy
- Significant Clinical Reversibility
 More than or equal to12%
 improvement in FEV1 after inhaled
 bronchodilator

CXR

- Most patients with asthma have normal x-rays.
- Signs of acute severe asthma:
- 1. Hyperinflation(Diaphra gm is down to the 8th rib anteriorly, MCL-ribbon-shaped heart...)

2. Complications:

- Pneumonia
- Pneumothorax

Blood Gas Measurments

- Best indicators of overall lung function are arterial blood gases
 - -PaO2, PaCO2, pH)

- Oxygen saturation (O2 sat)
 - Quantity of O2 bound to Hb/
 - -Normal O2 sat 97.5%

Conditions Mimicking Asthma

- Obstruction of small airways
 - COPD
 - Aspiration
 - Bronchiolitis
 - Cystic Fibrosis

- Obstruction of large airways
 - Foreign body
 - Congenital malformations
 - Cardiac disease
 - Endobronchial tumors
 - Extrabronchial obstruction
 - Psychogenic

Key Components of Asthma Therapy

- Assessment and monitoring
- Pharmacologic therapy
- "Trigger" control
- Patient education

Management of Acute exacerbation of Bronchial Asthma

Oxygen Therapy:

By nasal cannula or mask to achieve saturation > 90%, Controlled O2 therapy in patients with elevated CO2

Bronchdilators:

- Nebulized B2 agonists Combined with nebulised ipratropium bromide
- •given continuously for one hour, then every 60 min, after that regularly every 4-6 hours, Reduced according to response.

Corticosteroids:

hydrocortisone 100 mg every 6-8 hours to be reduced to dexamethasone or oral preparation later, then inhaled preparations started.

Antibiotics: when signs of bacterial infection

Intravenous magnesium

Aminophylline:

intravenous infusion every 8 hours to be transformed into oral long acting preparation after improvement of acute attack.

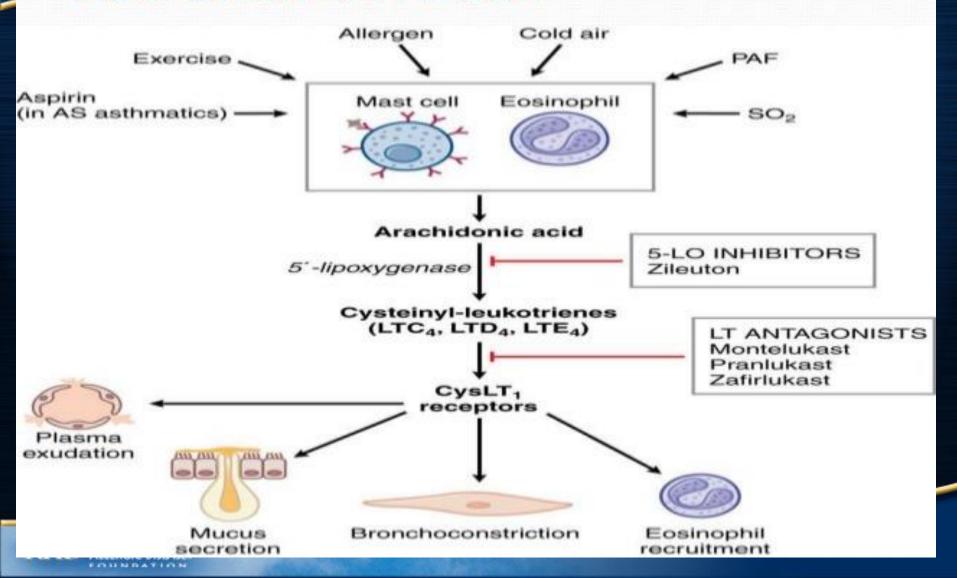
Overview of Asthma Medications

Daily: Long-term Control (anti-inflamatory)

- Corticosteroids (inhaled and systemic)
- LABAs
- Methylxanthines (theophylline) SR
- Leukotriene modifiers
- -Immunomodulators: 1.0malizumab
 2.Allergen-specific immunotherapy

As-needed: Quick Relief (bronchodilators)

- SABAs
- Anticholinergics
- Systemic corticosteroids



DRUGS USED IN ASTHMA

(Mechanism of action and side effects)

Mechanism of Action

Corticosteroids

MOA:

- Decreases the synthesis of inflammatory mediators
- Prevent recruitment, proliferation and activation of leukocytes

Systemic steroid therapy –

- Severe chronic asthma
- Status asthmaticus

Inhaled steroids -

Long term treatment of asthma

• TOXICITY

- -For the inhaled therapy:
- oropharyngeal candidiasis
- Dysphonia
- -For oral therapy
 - -Gastritis
 - -DM
 - -Hypertension
 - -Osteoporosis
 - -Adrenal suppression

BETA-2 AGONISTS

 Most important sympathomimetic used to reverse bronchoconstriction

- Almost given exclusively by inhalation
 - Decreases the systemic dose and adverse effects
 - -Occasionally by nebulizer

BETA-2 AGONISTS

- Salbutamol, terbutaline, Short-acting
 - -Drug of choice for acute asthma
- Salmeterol and formoterol
 - -Long-acting
 - -12 h or more
 - -Used for prophylaxis

BETA-2 AGONISTS

TOXICITY

- -Skeletal muscle tremor
- -Significant β₁ effects (tachycardia) at high clinical dosage
- -Arrhythmias may occur when used excessively
- -Hypokalaemia.

METHYLXANTHINES

- Bronchodilation is the most important therapeutic effect
- CNS stimulation, cardiac stimulation, vasodilation and slight increase in BP (due to release of NE from adrenergic nerves

- Slow-release theophylline
 - -For control of <u>nocturnal asthma</u>
 - -Most important in clinical use
- TOXICITY
 - Common adverse effects
 - GI distress
 - Tremor
 - Insomnia
 - <u>Overdosage</u>
 - Severe nausea and vomiting
 - Hypotension
 - Cardiac arrhythmias
 - Convulsion

MUSCARINIC ANTAGONISTS

-Competitively blocks muscarinic receptors in the airways

-Prevents bronchoconstriction mediated by <u>vagal discharge</u>

MUSCARINIC ANTAGONISTS

• <u>Ipatropium</u>

- -Delivered to the airways by pressurized aerosol
- -Have little systemic action

Tiotropium

-Newer longer-acting analog

•TOXICITY

- -Delivered directly to the airway, minimally absorbed
- -Systemic effects are small
- -In excessive dosage, minor atropinelike toxic effects may occur
- -<u>Does not cause tremor or</u> <u>arrhythmias</u>

